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8:20am  MC+AP+AS-MoM1  Dopant/Carrier and Compositional 
Profiling for 3D-Structures and Confined Volumes., Wilfried 
Vandervorst, A. Kumar, J. Demeulemeester, A. Franquet, P. Eyben, J. 
Bogdanowicz, M. Mannarino, A. Kambham, U. Celano, IMEC, KU Leuven 
Belgium INVITED 
The introduction of three-dimensional devices (FinFets, TFETs and 
nanowires), has created as new metrology challenges the characterization of 
dopant /carrier and impurity distributions in 3D-devices and confined 
volumes. Beyond these dimensional challenges, the use of alternative 
materials such SiGe, Ge, GeSn alloys as well as III-V materials, adds to the 
metrology requirements. Recent evolution towards growth (and strain 
relaxation) mediated by the confined volume (for instance relying on aspect 
ratio trapping) calls for metrology suited for very small volumes and more 
atomic scale observations. Metrology in 3D-structures and confined 
volumes has demonstrated that the changing surface/volume ratios in 
confined devices versus blanket films lead to phenomena (dopant 
deactivation, enhanced diffusion,..) which cannot be observed in blanket 
experiments. Hence more emphasis should be placed on the analysis of 
device and structures with relevant dimensions relative to the exploration of 
blanket experiments.  

Atomprobe tomography is able to provide composition analysis within very 
small volumes (a few nm3) with high sensitivity and accuracy and excellent 
spatial resolution. Hence this enables to observe dopant atom migration in 
3D-devices, and through some data mining analysis, even cluster formation 
as precursor to strain relaxation such as seen in metastable alloys like GeSn. 
Field Ion Microscopy, a complement to APT, can be used to image impurity 
atoms clustered around defects within the crystal. Routine application of 
APT is still hampered by localization problems, reconstruction artifacts due 
to inhomogeneous evaporation, local magnification effects, sensitivity due 
to the limited statistics, laser-tip interaction phenomena, etc.  

Although scanning spreading resistance microscopy is inherently 2D, 
analysis of 3D-devices (FinFet, ReRam, Sonos..) is possible by novel 
approaches such as SPM scalping. The introduction of novel modes such as 
soft retrace, FFT-SSRM has led of improved resolution and eliminates 
series resistances resulting from the current confinement in these narrow 
devices, decoupling the actual “spreading resistance” from the total 
resistance. Finally SSRM-carrier distribution have been coupled to device 
simulators leading to an accurate prediction of device performance.  

In addition to APT we also present here the concept of “self focusing 
SIMS” whereby we demonstrate that it is possible to determine, for 
instance, the SiGe(III-V) composition in trenches as small as 20 nm without 
having an ion beam with nm-resolution. This represents a significant step 
forward in terms of production control and statistical relevance.  

9:00am  MC+AP+AS-MoM3  Characterization of the Periodicity 
(Pitch) and Stress of Transistor Fin Structures using X-Ray Diffraction 
Reciprocal Space Mapping, Alain Diebold, M. Medikonda, SUNY 
College of Nanoscale Science and Engineering, M. Wormington, Jordan 
Valley Semiconductors Inc 
Cleanroom compatible, high resolution X-Ray diffraction systems are now 
capable of measuring the average pitch and critical dimensions of ordered 
arrays of fins and the stress state of high mobility layers at the top of the 
fins. Reciprocal Space Mapping (RSM) characterizes both the main Bragg 
diffraction peak and the satellite peaks associated with the fin periodicity. 
The periodicity of the fin arrays has decreased to the point where the fin 
array adds satellite diffraction peaks to the main Bragg diffraction peak 
from the semiconductor. The pitch can be calculated from the angular 
spacing of the satellite peaks. State of the art lithographic processing using 
the spacer patterning process often results in a different spacing between 
every other fin. This is known as pitch walking. Pitch walking is very 
difficult to observed, even using TEM cross-sectional images. The stress 
state of the high mobility epilayers such as Si1-xGex on Si fins can also be 
characterized using RSMs. In addition, some of the higher order satellite 

peaks will split when the fins have a near rectangular shape. This 
presentation compares the capability of cleanroom and synchrotron based 
XRD systems for reciprocal space mapping of Si and Si1-xGex / Si transistor 
fins arrays.1 
1 Measurement of Periodicity and Strain in Arrays of Single Crystal Silicon 
and Pseudomorphic Si1-xGex/Si Fin Structures using X-ray Reciprocal Space 
Maps, M. Medikonda, G. Muthinti, J. Fronheiser, V. Kamineni, M. 
Wormington, K. Matney, T. Adam, E. Karapetrovaand A.C. Diebold, J. 
Vac. Sci. Technol. B32, (2014), 021804. 

9:20am  MC+AP+AS-MoM4  MBE Grading Techniques for the 
Growth of InAsSb Films with Inherent Properties Unaffected by 
Strain, Wendy Sarney, S.P. Svensson, US Army Research Laboratory, Y. 
Lin, D. Wang, L. Shterengas, D. Donetsky, G. Belenky, Stony Brook 
University 
By using compositionally graded buffer layers, InAsSb can be grown by 
molecular beam epitaxy with its inherent lattice properties across the entire 
composition range. This direct bandgap, III-V alloy is of great interest for 
infrared detector applications, as it can cover both the mid (3-5 μm) and 
long wavelength (8-12 μm) bands. The direct bandgap provides the high 
quantum efficiency that allows it to directly compete with HgCdTe but at 
potentially much reduced fabrication costs. InAsSb was sidelined for 
decades, because conventional wisdom indicated its bandgap bowing 
parameter would not allow it to reach the needed 10-12 μm benchmark. The 
material was further maligned because it was thought to exhibit CuPt 
ordering, which affects the bandgap. By revisiting the growth techniques we 
have determined that the bandgap bowing parameter of InAsSb is more than 
sufficient for LWIR applications and it can be grown free of ordering, 
provided that the material is grown with its inherent, undistorted lattice 
constant. 

As there is no perfect substrate available for the InAsSb compositions of 
interest (typically containing ~40-50% Sb), we grow the films on 
compositionally graded buffer layers on GaSb substrates. The buffer layers 
consist of AlGaInSb, GaInSb, or InAsSb grades based on the theories 
described by J. Tersoff.1 In this paper we provide experimental verification 
of Tersoff’s theories applied to ternary and quaternary grades, and for both 
tensile and compressive grades. Furthermore, the specific parameters 
calculated by Tersoff, such as the boundary for the dislocation-free region 
(Zc) is exactly verified by transmission electron microscopy (TEM). 

Reciprocal space maps show that the InAsSb layers grown on 
compositional graded buffer layers have their native lattice constant. The 
films are free from strain-relieving dislocations within the field of view 
allowed by TEM. Furthermore, we see no evidence of group V ordering for 
films grown in this manner. Although ordering is known to further reduce 
the bandgap, it is a difficult property to control, and it would be very 
undesirable to rely on it to induce the needed longer wavelengths. We have 
observed that a finite amount of residual strain that is small enough not to 
cause dislocation formation can induce CuPt ordering, but this can be 
completely avoided by using appropriate grading techniques. We also see 
no evidence of phase segregation or miscibility gaps. 

Photoluminescence wavelengths have been measured for numerous InAsSb 
films, with a maximum wavelength to date of 12.4 μm. This may be the 
ideal material for direct bandgap infrared device applications. 

J. Tersoff, Appl. Phys. Lett. 62, 693 (1993); 

9:40am  MC+AP+AS-MoM5  Quantitative 3-D Imaging of Filaments in 
Hybrid Resistive Memory Devices by Combined XPS and ToF-SIMS 
Spectroscopies, Y. Busby, Jean-Jacques Pireaux, University of Namur, 
Belgium 
Resistive switching has been observed in a multitude of inorganic (oxides, 
chalcogenides...) and hybrid (organic or polymers plus metal nanoparticles) 
thin films simply sandwiched between two metal electrodes. Organic 
memory devices are particularly promising candidates for developing large 
scale, high density, cost efficient, non-volatile resistive memories. Their 
switching mechanism has been for a long time suggested to depend on the 
formation/rupture of localized conducting paths (filaments). Using electrical 
characterization by impedance spectroscopy, filament formation has been 
experimentally demonstrated to be the dominant switching mechanism in 
many organic memories, only very recently (2014). Otherwise, despite of 
very dedicated efforts, few experimental techniques have so far succeeded 
in characterizing and providing information on filament(s).  

The present work combines for the first time High Resolution X-Ray 
induced Photoelectron Spectroscopy (for its quantitative information 
capability) and Time-of-Flight Secondary Ion Mass Spectrometry (for its 
very high atomic sensitivity and 3D imaging capabilities) to quantitatively 
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study both lateral and in depth elements distribution in a complete and 
operative organic memory device: what happens to be top electrode metal 
diffusion and filament formation is evidenced and quantitatively evaluated 
in memory devices which are based on a highly insulating and cross-linked 
polystyrene layer, processed by plasma polymerization, sandwiched 
between silver and indium tin oxide electrodes. Depth profiles evidence the 
metal diffusion in pristine and electrically addressed memory elements 
through the whole organic layer where the silver concentration can reach 
value as high as 5.1019 at/cm3. Filament formation is shown to be initiated 
during the top electrode evaporation, and is then successively enhanced by 
field induced diffusion during the electrical addressing. The 3-D ToF-SIMS 
images evidenced the formation of metallic paths extending through the 
entire device depth, electrically bridging the two electrodes when the 
element is in its low resistance state. Filaments with different characteristics 
have also been studied in organic memories based on a semiconducting 
polymer (Polyera N1400 ActiveInk) or on semiconducting small molecules 
(Tris-(8-hydroxyquinoline)aluminum, AlQ3). It appears therefore that 
metallic filaments are indeed at the origin of switching in organic memory 
devices. 

10:00am  MC+AP+AS-MoM6  High Throughput Electron Diffraction-
Based Metrology of Nanocrystalline Materials, X. Liu, Carnegie Mellon 
University, D. Choi, Korea Railroad Research Institute, Republic of Korea, 
N.T. Nuhfer, Carnegie Mellon University, D.L. Yates, T. Sun, University of 
Central Florida, G.S. Rohrer, Carnegie Mellon University, K.R. Coffey, 
University of Central Florida, Katayun Barmak, Columbia University 
The resistivity of Cu, the current interconnect material of choice, increases 
dramatically as the conductor’s dimensions decrease towards and below the 
mean free path of electrons (39 nm at the room temperature). Two 
scattering mechanisms that contribute to this resistivity size effect are 
surface scattering, evidenced by thickness dependence of resistivity, and 
grain boundary scattering, evidenced by grain size dependence of 
resistivity. Quantification of microstructural parameters, such as grain size, 
at the scale of the resistivity size effect necessitates the use of transmission 
electron microscopy (TEM). In this work, an electron diffraction-based 
orientation mapping system installed on the TEM is used to characterize not 
only nanometric Cu films, but also new materials, W, Ni, Ru and Co, that 
are potential candidates to replace Cu as the next-generation interconnect 
material. In this characterization technique, spot diffraction patterns are 
collected as the nano-sized beam scans the area of interest. The 
crystallographic orientation of each scanned pixel is determined by cross-
correlation with pre-calculated diffraction patterns (termed, templates). 
Precession is used to reduce the dynamical scattering effects, increasing the 
reliability of the orientation mapping. The raw orientation data is then 
processed to yield the microstructural data via a well-defined procedure 
developed to parallel that used to process electron backscatter orientation 
data taken in scanning electron microscopes. This characterization yields 
full range of microstructural parameters including grain size, grain size 
distribution, orientation distribution, misorientation distribution, grain 
boundary and interface character and plane distribution that are extracted 
from the crystal orientation maps in a nearly fully-automated manner. These 
microstructural parameters, along with sample thicknesses, are used to 
evaluate the validity of the semiclassical resistivity size models for Cu and 
the new materials, and, where applicable, to determine the relative 
contributions of surface and grain boundary scattering to the resistivity 
increase. 

10:40am  MC+AP+AS-MoM8  LEIS Characterization of the Outer 
Surface, Ultra-Thin Layers and Contacts, Hidde Brongersma, ION-TOF 
/ Tascon / Calipso, Netherlands, P. Bruener, T. Grehl, ION-TOF GmbH, 
Germany, H.R.J. ter Veen, Tascon GmbH, Germany INVITED 
Modern day technologies are increasingly based on high performance 
nanomaterials and novel preparation techniques for such materials are 
developed at a rapid pace. Advances in nanoscience and nanotechnology 
heavily rely on the availability of analytic techniques that can validate and 
support new nanomaterials synthesis procedures. With the introducing of 
the Qtac100, a new high-sensitivity Low Energy Ion Scattering (HS-LEIS) 
instrument, one can quantitatively analyze the atomic composition of the 
surface of a wide range of materials with an unparalleled surface sensitivity.  

The outermost atoms of a surface largely control processes such as growth, 
nucleation, poisoning, adhesion and electron emission. While analytic tools 
(such as XPS) probe an average of many atomic layers, LEIS can 
selectively analyze the outer atoms. In addition, non-destructive in-depth 
information, with high depth resolution, is obtained for the heavier elements 
(0 - 10 nm). HS-LEIS is just as well suited for the quantitative analysis of 
amorphous, insulating and extremely rough surfaces as for flat single 
crystals. Since HS-LEIS is a fast analysis technique, it can be used to follow 
diffusion processes in-situ.  

The focus will be on applications where valuable information has been 
obtained that is impossible (or very difficult) to obtain with other analytical 

techniques. The unique possibilities will be illustrated with state-of-the-art 
applications for: ALD growth of ultra-thin layers, surface modification, 
interface diffusion, core/shell nanoparticles, graphene, self-assembled 
monolayers for sensors. 

The findings will be compared and contrasted to those obtained by other 
analytic techniques such as XPS, Auger, SIMS, RBS and conventional 
LEIS.  

11:20am  MC+AP+AS-MoM10  Backside versus Frontside 
Characterization of High-k/Metal Gate Stacks for CMOS sub-14 nm 
Technological Nodes, Eugenie Martinez, CEA, LETI, MINATEC 
Campus, France, B. Saidi, P. Caubet, F. Piallat, STMicroelectronics, 
France, H. Kim, CEA, LETI, MINATEC Campus, France, S. Schamm-
Chardon, CEMES-CNRS, France, R. Gassilloud, CEA, LETI, MINATEC 
Campus, France 
Down-scaling of CMOS transistors beyond the 14 nm technological node 
requires the implementation of new architectures and materials. The gate 
last integration scheme is a promising solution to better control the 
threshold voltage of future MOSFETs, because of its low thermal budget 
[1]. Advanced characterization methods are needed to gain information 
about the chemical composition of such structures. The analysis of thin 
layers and interfaces buried under a thick metal electrode is particularly 
challenging. An effective approach based on backside sample preparation is 
proposed here.  

To tune the work-function toward nMOS values, the technology currently 
investigated is based on HfO2 for the dielectric and a thin TiN layer capped 
by a TiAl alloy for the gate [2]. For a better understanding of aluminium 
and other elements redistributions after a 400°C annealing, a specific 
methodology has been developed based on the removal of the Si substrate. 
It allows to achieve XPS and Auger analyses from the backside of the 
sample [3]. 

In particular, Auger depth profiling performed on HfO2/TiN/TiAl/TiN/W 
gate stacks at low energy (500 eV Ar+) brought the following main 
conclusions: a) no Al diffusion toward the HfO2/TiN interface, b) nitrogen 
out diffusion in the upper TiAl film, c) significant oxygen scavenging. By 
comparison, these results evidenced that Auger frontside analyses suffer 
from sputter-induced artifacts.  

In a further study, to understand the behavior of nitrogen out diffusion in 
the TiAl layer, we deposited TiAlNx thin films with various nitrogen flows 
by reactive sputtering deposition and performed backside XPS analyses. At 
low/medium nitrogen flows, which correspond to the TiAlNx film after 
TiN/TiAl bilayer anneal, the N1s core level spectra obviously shows that N 
is mainly bonded to Al rather than Ti. Results are compared with frontside 
XPS performed with a thinner TiN upper layer. The backside approach is 
shown to be more representative of the technological stack, in particular 
with respect to the TiN oxidation.  

Measurements were carried out at the NanoCharacterization Platform 
(PFNC) of MINATEC.  

[1] C. L. Hinkle et al., Appl. Phys. Let. 100, 153501 (2012). 

[2] A. Veloso et al.., Symposium on VLSI Technology, Digest of Technical 
Papers (2011). 

[3] M. Py et al., AIP conference proceedings 1395, 171 (2011). 

11:40am  MC+AP+AS-MoM11  Charge Storage Properties of Al/(1-
x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BTBCN)/HfO2/p-Si 
Metal/Ferroelectric/Insulator/Semiconductor Devices, Souvik Kundu, 
M. Clavel, D. Maurya, M. Hudait, S. Priya, Virginia Tech 
Metal-ferroelectric-insulator-semiconductor (MFIS) devices with pulsed 
laser deposited 300 nm (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) 
(BTBCN) ferroelectric film and atomic layer deposited 10 nm HfO2 
insulating layer on silicon semiconductor substrate were developed for next 
generation ferroelectric non-volatile memory applications. For the first 
time, the structural, interfacial, and electrical properties of these 
Al/BTBCN/HfO2/p-Si MFIS devices were studied, and the role of BTBCN 
as charge storing elements was also established. The X-ray diffraction and 
transmission electron micrograph with selected area diffraction pattern 
clearly demonstrate the single crystallization of BTBCN ferroelectric films. 
It was found that insertion of 10 nm HfO2 in-between BTBCN and Si 
improves the interfacial properties and also prevents the interdiffusion of 
semiconductor into the ferroelectric layer. The optical bandgap of BTBCN 
was found to be 4.38 eV using transmission spectrum analysis. The MFIS 
structure showed capacitance-voltage hysteresis loops due to the 
ferroelectric polarization of BTBCN and the maximum memory window 
was found to be 1.65 V when the sweeping voltage was ±10 V. However, 
no memory window was found in metal-insulator-semiconductor devices, 
i.e., when there is no BTBCN layer in between metal and insulating layer. 
The leakage current of these devices was found to be 7×10−9 A/cm2 at an 
applied voltage of -1 V. The wide memory window and superior retention 
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properties were achieved due to the presence of BTBCN. The electronic 
band diagrams of these MFIS devices during program and erase operations 
were proposed.  

Keywords: BTBCN; MFIS; Memory window; Leakage current; Band-
diagram 
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