Monday Afternoon, November 10, 2014

Materials Characterization in the Semiconductor Industry Focus Topic Room: 313 - Session MC+2D+AP+AS-MoA

Characterization of III-Vs (2:00-3:20 pm)/Photovoltaics, EUV masks, etc. (3:40-4:40 pm) Moderator: Alain Diebold, SUNY College of Nanoscale Science and Engineering, Paul van der Heide, GLOBALFOUNDRIES, NY, USA

2:00pm MC+2D+AP+AS-MoA1 High Resolution SIMS Depth Profiling in III-V Compound Semiconductors, Marinus Hopstaken, M.S. Schamis, Y. Sun, A. Majumdar, C.-W. Cheng, B.A. Wacaser, G. Cohen, K.K. Chan, D.K. Sadana, D.-G. Park, E. Leobandung, IBM T.J. Watson Research Center

Recently, there has been renewed technological interest for application of InGaAs and related III-V high-mobility materials as a potential replacement for the MOSFET Si-channel [1]. Successful integration of novel materials and processes requires accurate physical characterization of in-depth chemical distribution with nm-scale resolution. We will address some of the challenges regarding SIMS depth profiling of III-V materials and propose analytical solutions for the characterization of more complex multilayer substrates, impurities therein, and Ultra-Shallow Junction (USJ) doping profiles.

Ion beam based sputtering of III-V compounds is intrinsically more complex than in conventional Si substrates. One of the major issues with depth profiling of III-V materials is their higher sensitivity to formation of ion-beam induced topography, which has a detrimental impact on depth resolution [2]. We have previously reported anomalous sputtering behavior of (In)GaAs under low energy O_2^+ sputtering, causing severe degradation of depth resolution [3].

In case of low energy Cs⁺ sputtering at oblique incidence, we have achieved uniform sputtering conditions on different III-V compounds with no significant topography formation. We have demonstrated constant depth resolution in III-V multilayer structures with decay lengths as low as 2 nm/decade at low Cs⁺ impact energy (down to 250 eV).

We will address some of the analytical challenges regarding the quantification of depth and concentration scales in III-V multilayer structures, grown by hetero-epitaxy. We employ explicit corrections for yield variations using appropriate standards in their respective matrices. A special case occurs for the group IV *n*-type dopants (*i.e.* Si, Ge), which are typically monitored as negative cluster ion attached to the group V element for reasons of sensitivity. We have developed a quantification scheme to determine [Si] doping profiles in hetero-epitaxial structures, composed from the negative cluster ions (e.g. SiAs', SiP') in the respective matrices.

In summary, this work has improved our fundamental understanding of low-energy ion beam interactions in III-V materials, which is essential for achieving sub-nm depth resolution in thin-film structures. In addition, this work has provided with an optimum window of analytical conditions for quantitative analysis of a wide variety of impurities and dopants with high sensitivity in different III-V materials.

1. Y. Sun et al., IEDM 2013 Conf. Proc., p. 48-51.

2. E.-H. Cirlin, J. J. Vajo, R. E. Doty, and T. C. Hasenberg, J. Vac. Sci. Technol. A9, 1395 (1991).

3. M. J. P. Hopstaken et al., J. Vac. Sci. Technol. B28, 1287, (2012).

2:20pm MC+2D+AP+AS-MoA2 Nitrogen Incorporation in Dilute Nitride III-V Semiconductors Measured by Resonant Nuclear Reaction Analysis and Ion Beam Channeling, *John Demaree*, S.P. Svensson, W.L. Sarney, US Army Research Laboratory

The behavior of dilute nitride III-V semiconductors depends critically on the number of nitrogen atoms residing substitutionally on Group V sites, and this small nitrogen incorporation may be used to tailor the optical bandgap for detection of electromagnetic radiation in future low-cost nearinfrared imaging systems. In this study, films of GaAsN and GaSbN were synthesized using molecular beam epitaxy at various temperatures and growth rates, with the assistance of a nitrogen plasma source isotopically enriched with ¹⁵N. The films were examined using x-ray diffraction, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and resonant nuclear reaction analysis (RNRA) to assess the amount of nitrogen incorporation. Furthermore, RNRA measurements were combined with ion beam channeling methods to ascertain the fraction of incorporated nitrogen atoms residing on substitutional and interstitial lattice sites. The narrow energy resonance and corresponding high depth resolution of the nuclear reaction used (the 897 keV p,gamma reaction with ¹⁵N) also enabled an assessment of the substitutional incorporation of the nitrogen throughout the thickness of the 100-400 nm thick films.

2:40pm MC+2D+AP+AS-MoA3 Determination of Growth Conditions for Highly Mismatched Alloys, Using In Situ Auger Electron Spectroscopy and Flux grading, *Stefan Svensson*, W.L. Sarney, US Army Research Laboratory, M. Ting, K.M. Yu, Lawrence Berkeley National Laboratory, L.W. Calley, Staib Instruments, Inc.

The electronic band structures of GaN can be effectively modified by the incorporation of Sb. Because of the high electronegativity mismatch between Sb and N growth of GaNSb by molecular beam epitaxy (MBE) must be done at relatively low temperatures and under N-rich condition in order to control the bandgap of the material. The Sb-flux must also be chosen carefully in relation to the growth rate and N-overpressure to control composition and crystallinity. These growth conditions represent a vast parameter space, which is extremely time-consuming to explore in a systematic fashion.

The typical approach for attacking such a problem is to judiciously select a limited set of parameter combinations based on experience and literature data. However, if growth windows are narrow there is no guarantee for success. To more quickly cover a larger parameter range we have grown a very limited number of samples but continuously varied one parameter at a time while employing a combination of in situ and ex situ probes that can reveal critical parameter points. The most novel piece of equipment is the in situ *STAIB Auger Probe*, which allows uninterrupted chemical analysis during crystal growth. In all of the following experiments the substrate temperature was fixed at 325 °C.

In one experiment we determined the transition between Ga- and N-rich MBE growth conditions of GaN by setting a fixed N-flow that generated a steady-state background chamber pressure of 1.5×10^{-5} Torr, while the Ga-source was set up to generate a linear flux ramp from 9.8×10^{16} to 3.9×10^{18} at/m²/s over two hours. During this ramp, the Auger electron signals for N (375 eV), and Ga (1050 eV) were continuously monitored. As expected, both the Ga and N signals increased as a GaN film was starting to form under N-rich conditions and subsequently stabilized. At about 80 min the N-signal started decreasing, which we define as the boundary between N-and Ga-rich conditions and could thus determine the critical Ga-flux relative to the N gas-flow.

In a second experiment the previous information was used to set Ga- and Nfluxes to slight N-rich conditions, while the Sb-valve was slowly opened. In this case both the Auger signals and the reflection high-energy electron diffraction pattern were observed to find the transition between crystalline and amorphous growth conditions. The sample was subsequently analyzed with Rutherford backscattering, which verified the varying Sb-composition. With the data from these two test samples subsequent films were grown with the desired bandgap of 2.2 eV suitable as photoelectrodes for photoelectrochemical water splitting application.

3:00pm MC+2D+AP+AS-MoA4 Electron Channeling Contrast Imaging: Examining Dislocation Effects in III-Ns, J.K. Hite, U.S. Naval Research Laboratory, P. Gaddipati, American Society for Engineering Education, Michael Mastro, C.R. Eddy, D.J. Meyer, U.S. Naval Research Laboratory

III-N materials continue to play a significant role in a range of technologies from rf electronics to visible and UV emitters and detectors. This is true despite a heavy population of extended defects in the active regions of these devices, which degrade the operation, potential performance, and reliability of such devices. With such high dislocation densities when grown heteroepitaxially on sapphire or SiC (10^8 - 10^{10} cm⁻²), techniques to reliably, rapidly, and non-destructively determine spatially defect density are necessary to determine the effects of these defects on device performance.

The most precise characterization tool for defect density has been transmission electron microscopy, but this is a destructive technique, as are other methods such as molten KOH or photo-electrochemical etching of the surface to reveal dislocation sites. Cathodoluminescence imaging only detects dislocations which change the optical emission of the material. X-ray diffraction can be used to extrapolate dislocation density, but not identify individual defects.

Electron channeling contrast imaging (ECCI), a non-destructive technique that has been used to examine defects in metals and ceramics, has recently seen use in III-nitride semiconductors. This technique allows for direct imaging of dislocations, grain boundaries, and topological information all at once. We will present an overview of the uses of ECCI in characterizing III- N materials, culminating in recent work applying the technique to AlGaN/GaN HEMT structures. By imaging the active areas of van der Pauw structures on a single sample with varying mobility, we find a direct negative correlation between screw dislocation and electron mobility.

3:40pm MC+2D+AP+AS-MoA6 EUV Lithography Mask Cleaning Applications of TOF SIMS Analysis, *Thomas Laursen*, *S.W. Novak*, SUNY College of Nanoscale Science and Engineering, *A. Rastegar*, SEMATECH, *T. Nakayama*, SUNY College of Nanoscale Science and Engineering

Extreme-UV Lithography (EUVL) is the current R&D frontier for the semiconductor industry. Developing this new technology is generating new studies into a range of new materials issues. EUVL photomask is one important branch of this technology and serious issues have been identified related to the mask surfaces. Photomask performance is usually characterized in terms of EUV ($\lambda = 13.5$ nm) Reflectivity (EUVR) and absorption. But when it comes to surface degradation by radiation exposure and mask cleaning of defects, it is valuable to complement EUVR with a surface analytical technique in order to elucidate the material changes taking place. TOF SIMS has proven to be a versatile analytical technique in this regard. While it may not be the optimal technique in each and every case, it does provide high sensitivity to compositional changes and high-resolution depth profiles. Furthermore, TOF-SIMS analysis on the IonTof V-300 can be done using full-size photomasks which allow analysis at the various stages of processing.

The surface structures on the EUV mask surface consist of a stack of thin films having thicknesses ranging from 1 to 50 nm. The reflective layer contains 40 bilayers of Mo-Si consisting of 2.7 nm Mo and 4.1 nm Si—ending with a Si layer. This multilayer is usually capped with either a 2.5 nm Ru or in some cases a 2 nm TiO₂ surface film. Metallic films with high extinction coefficient with thicknesses in the range from 35 to 75 nm are deposited as an absorber layer and patterned on Ru-capped multilayer blanks.

The combination of EUVR and TOF-SIMS analysis of the Ru capped multilayer EUV masks and blanks provided detailed information on the effects of cleaning on contamination, materials degradation and oxidation. Whereas the EUVR measurements could be directly related to mask specifications, the TOF-SIMS analysis provided more detailed information on surface contamination and oxidation levels, as well as surface-film integrity.

The interactions of the various segments constituting a cleaning process have been characterized in terms of their effect on film etching and removals as well as film oxidation. In general sulfuric acid - H2O2 -based treatments caused a severe deterioration of the film structures, whereas NH4OH - H2O2 -based treatments (SC1) caused a more manageable deterioration. Current mask cleaning processes are therefore primarily based on SC1 cleaning. Another concern for mask defectivity is progressive defects generated by sulfate and ammonium compounds. TOF-SIMS was also used to study the aggregation of these compounds during electron irradiation (simulating EUV-irradiation conditions), which was visualized by stage-scan imaging.

4:00pm MC+2D+AP+AS-MoA7 Characterization of Ag/CuInSe₂ Thin-Film Photovoltaics by Photoelectron Spectroscopy, *Pinar Aydogan*, Bilkent University, Turkey, *N. Johnson, A. Rockett*, University of Illinois at Urbana-Champaign, *S. Suzer*, Bilkent University, Turkey

Photovoltaic power source technology is one of the most desirable ways to provide energy for the world of tomorrow. Hence, it is important to understand the surface, electrical and photo-induced properties of these materials in order to enhance their efficiencies. Currently used materials in photovoltaic manufacturing technology are mainly crystalline silicon, CdTe (cadmium telluride), amorphous and nanocrystalline silicon, CIS (copper indium diselenide) and CIGS (copper indium gallium selenide). In this study, we focused only on the silver/copper indium diselenide cells, which contain a CdS layer on top. X-ray photoelectron spectroscopy (XPS) that we used for analysis was modified to apply both an external photo illumination and voltage bias during data acquisition. The first part of the research focuses on the result of photo induced variations in binding energies of elements and the main objective is to understand the different binding energy shifts of each element in the Ag/CuInSe2 films in both wavelength- and intensity-sensitive fashion under illumination with three different continuous wave lasers. Furthermore, electrical charging properties of CIS/CdS thin film are studied with externally applied electrical square-wave pulses (SQW), so-called Dynamic XPS. Results will be presented with an ultimate aim of better understanding of the roles of defects affecting the performance of CIS devices. This work was supported by a joint NSF-TUBITAK collaborative research project (NSF Grant No: 1312539 TUBITAK Grant No: 212M051).

4:40pm MC+2D+AP+AS-MoA9 Facile Synthesis of Composition Tuned Cu_{1-x}Zn_xO Nanoarchitecture on Alpha-Brass, Y. Myung, Sriya Banerjee, Washington University, St. Louis, H. Im, J. Park, Korea University, S. Raman, Physical Electronics Inc., P. Banerjee, Washington University, St. Louis

Composition controlled Cu_{1-x}Zn_xO layers have been synthesized on pretreated a-brass followed by ambient oxidation. The pretreatment consists of a vacuum anneal step which effectively depletes the surface of Zn. The depleted Zn specimens were then oxidized at various temperatures ranging from 300°C – 600°C. SEM and XRD result shows the oxide consists of CuO/ZnO film/nanowire composite architecture. The analysis of electronic structure (XPS) and optical properties (PL) shows the formation of Zn containing alloy in the surface region of CuO films. The composition ratio of Cu and Zn were calculated based on XPS survey spectra. In particular, XPS fine spectra revealed that as the oxidation temperature increases, the binding energy of Zn $2p_{3/2}$ shifts to higher energy, suggesting the possibility of hybridization between the Zn ions and Cu ions.

Photoelectrochemical properties of Cu_{1-x}Zn_xO cathodes exhibit robust photocurrent densities (~3 mA/cm²). We suggest the dezincification followed by thermal oxidation provides a better approach for composition tuned nanostructure design and fabrication. These semiconductor nanoarchitectures are excellent candidate materials for fabricating solar energy harvesting photoelectrodes as well as optoelectronic devices.

5:00pm MC+2D+AP+AS-MoA10 In-line Dimensional Measurement via Simultaneous Small Spot XPS and XRF for Cu CMP Process Control, B. Lherron, ST Microelectronics, Wei Ti Lee, Revera, Motoyama, Chao, Deprospo, Kim, IBM

As Cu lines used for CMOS devices interconnections become thinner and smaller, current metrology solutions reach their limits. XRay Photoelectron Spectroscopy (XPS) and XRay Fluorescence (XRF) are commonly used as Semiconductor manufacturing process control techniques to measure composition and/or film thickness. In this paper we are exploring the use of a combination of XPS and XRF collected simultaneously to measure the dimensions (line top CD, area and thickness) of Cu lines post Cu CMP on patterned structures. A set of structures with different Cu line width and pitch were used to demonstrate the capability of XPS/XRF on this new application. Results obtained showed good correlation with predicted CD measured by XPS and line section measured by XRF. The paper will also present the comparison with cross section as well as the performance in precision, sensitivity and accuracy of the newly developed technique.

This work was performed by the Research and Development Alliance Teams at various IBM Research and Development Facilities

5:20pm MC+2D+AP+AS-MoA11 Imaging of the Native Inversion Layer on Silicon-on-Insulator via Scanning Surface Photovoltage; Implications for RF harmonic generation, *Daminda Dahanayaka*, IBM, A. Wong, Dartmouth College, P. Kaszuba, L. Moszkowicz, R. Wells, F. Alwine, IBM, L.A. Bumm, University of Oklahoma, R. Phelps, J. Slinkman, IBM

Imaging of the native inversion layer on Silicon-on-Insulator via Scanning Surface Photovoltage;

Implications for RF harmonic generation

Daminda Dahanayaka¹, Andrew Wong², Phil Kaszuba¹, Leon Moszkowicz¹, Randall Wells¹, Frank Alwine¹, Lloyd A. Bumm³, Richard Phelps¹ and James Slinkman¹

¹IBM Microelectronics, 1000 River Street, Essex Junction, Vermont 05452

²Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755

³Homer L DodgeDepartment of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019

Email: damindahd@us.ibm.com

One of the major challenges encountered during the development of IBM's state-of-the-art RF CMOS Technology on Silicon-on-Insulator (SOI) was to overcome the adverse effects on the harmonic performance of stacked switch devices and transmission lines due to the presence of trapped positive charge, Q^+ , at the interface of the buried oxide (BOX) and the underlying high-resistivity substrate (SX). Most commercially available standard SOI substrates for RF applications have specifications to maintain Q^+ less than 10^{11} cm⁻². The substrate resistivity for IBMs technology is specified to be greater than 1000 ohm-cm, (p-type), i.e. $p_0 \approx 5 \times 10^{13}$ cm⁻³. This combination induces a "built-in" n-type inversion layer just under the BOX/SX interface. Using "Scanning Surface Photovoltage" (SSPV) microscopy, we present the first data to show quantitatively the extent of this inversion layer into the substrate. The technique disclosed here quantifies the inversion layer, the degree to which it can be suppressed, and

has led to further enhancements to the RF technology on SOI, such as substantial NFET off-state leakage reduction.

References

- [1] A. Botula et al., IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2009. SiRF '09, 1-4 (2009).
- [2] L.A. Bumm et al., US Patent No. 7,944,550.
- [3] T. Ohno, IEDMTech. Digest, 627-630 (1995).
- [4] J. Greco et al., US Patent No. 8299537 B2.

Authors Index

Bold page numbers indicate the presenter

-A-

Alwine, F.: MC+2D+AP+AS-MoA11, 2 Aydogan, P.: MC+2D+AP+AS-MoA7, 2

– B -

Banerjee, P.: MC+2D+AP+AS-MoA9, 2 Banerjee, S.: MC+2D+AP+AS-MoA9, 2 Bumm, L.A.: MC+2D+AP+AS-MoA11, 2

Calley, L.W.: MC+2D+AP+AS-MoA3, 1 Chan, K.K.: MC+2D+AP+AS-MoA1, 1 Chao: MC+2D+AP+AS-MoA10, 2 Cheng, C.-W.: MC+2D+AP+AS-MoA1, 1 Cohen, G .: MC+2D+AP+AS-MoA1, 1

— D —

Dahanayaka, D.: MC+2D+AP+AS-MoA11, 2 Demaree, J.: MC+2D+AP+AS-MoA2, 1 Deprospo: MC+2D+AP+AS-MoA10, 2

— E —

Eddy, C.R.: MC+2D+AP+AS-MoA4, 1 — G —

Gaddipati, P.: MC+2D+AP+AS-MoA4, 1 — H -

Hite, J.K.: MC+2D+AP+AS-MoA4, 1

Hopstaken, M.J.P.: MC+2D+AP+AS-MoA1, 1

-I-Im, H.: MC+2D+AP+AS-MoA9, 2 - I —

Johnson, N.: MC+2D+AP+AS-MoA7, 2 — K -

Kaszuba, P.: MC+2D+AP+AS-MoA11, 2 Kim: MC+2D+AP+AS-MoA10, 2

— L —

Laursen, T.: MC+2D+AP+AS-MoA6, 2 Lee, W.T.: MC+2D+AP+AS-MoA10, 2 Leobandung, E.: MC+2D+AP+AS-MoA1, 1 Lherron, B.: MC+2D+AP+AS-MoA10, 2 – M —

Majumdar, A.: MC+2D+AP+AS-MoA1, 1 Mastro, M.A.: MC+2D+AP+AS-MoA4, 1 Meyer, D.J.: MC+2D+AP+AS-MoA4, 1 Moszkowicz, L.: MC+2D+AP+AS-MoA11, 2 Motoyama: MC+2D+AP+AS-MoA10, 2 Myung, Y.: MC+2D+AP+AS-MoA9, 2

— N -

Nakayama, T.: MC+2D+AP+AS-MoA6, 2 Novak, S.W.: MC+2D+AP+AS-MoA6, 2 — P —

Park, D.-G.: MC+2D+AP+AS-MoA1, 1

Park, J.: MC+2D+AP+AS-MoA9, 2 Phelps, R.: MC+2D+AP+AS-MoA11, 2 — R —

Raman, S.: MC+2D+AP+AS-MoA9, 2 Rastegar, A.: MC+2D+AP+AS-MoA6, 2 Rockett, A.: MC+2D+AP+AS-MoA7, 2 -S-

Sadana, D.K.: MC+2D+AP+AS-MoA1, 1 Sarney, W.L.: MC+2D+AP+AS-MoA2, 1: MC+2D+AP+AS-MoA3, 1 Schamis, M.S.: MC+2D+AP+AS-MoA1, 1 Slinkman, J.: MC+2D+AP+AS-MoA11, 2

Sun, Y.: MC+2D+AP+AS-MoA1, 1 Suzer, S.: MC+2D+AP+AS-MoA7, 2

Svensson, S.P.: MC+2D+AP+AS-MoA2, 1: MC+2D+AP+AS-MoA3, 1

– Т —

Ting, M.: MC+2D+AP+AS-MoA3, 1 – W —

Wacaser, B.A.: MC+2D+AP+AS-MoA1, 1 Wells, R.: MC+2D+AP+AS-MoA11, 2 Wong, A.: MC+2D+AP+AS-MoA11, 2 -Y-

Yu, K.M.: MC+2D+AP+AS-MoA3, 1