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2:20pm  IS+AS+MC+SS-TuA1  Nanocrystal Shape Evolution during 
Growth, Haimei Zheng, Lawrence Berkeley Lab, University of California, 
Berkeley INVITED 
An understanding of nanocrystal shape control mechanisms during growth 
is critical for the design of novel functional materials with surface-enhanced 
properties. However, the atomic level shape evolution of nanocrystals 
during growth is mostly unknown due to the lack of direct observation. We 
use liquid cells under transmission electron microscope (TEM) to study the 
growth of Pt or Pt-alloy nanoparticles in situ, where growth either by 
nanoparticle attachment or by monomer attachment has been observed. 
First, I will present Pt-Fe nanorods formation by shape-directed 
nanoparticle attachment under the electron beam. Winding polycrystalline 
nanoparticle chains are achieved at the early stage then they are straightened 
to yield single-crystal nanorods. Tracking their growth trajectories allows us 
to distinguish the force fields exerted by single nanoparticles and 
nanoparticle chains. Second, I will show the observation of platinum 
nanocube growth and the facet development. By in situ imaging with high 
spatial and temporal resolution, we have identified unique growth 
mechanisms that cannot be predicted by Wulff construction or other 
existing growth theorems. We found layer-by-layer growth of the {100} and 
{111} facets while the {110} facets show steps. We also found that the 
growth rates of these facets are similar until the {100} facets stop growth. 
Hence, the distance from {100} facets to the crystal center is fixed 
throughout the subsequent growth. The {110} facets are eliminated when 
two adjacent {100} facets meet. Lastly, the growth of {111} facets fills the 
corners to complete a nanocube. Our calculation suggests oleylamine ligand 
mobility on the facet is responsible for the arresting of {100} growing 
facets. References:  

1. Liao et al. ¬“Facet Development during Platinum Nanocube Gro¬¬wth” 
Science in review.  

2 . H. G. Liao, L. Cui, S. Whitelam, H. Zheng, "Real time imaging Pt3Fe 
nanorod growth in solution." Science 336, 1011 (2012). 

3. We used TEM facility at National Center for Electron Microscopy of 
Lawrence Berkeley National Laboratory (LBNL), which is supported by the 
Office of Basic Energy Sciences, Division of Materials Sciences and 
Engineering of the U.S. Department of Energy under Contract #DE-AC02-
05CH11231. H.Z. thanks the support of DOE Office of Science Early 
Career Research Program. 

3:00pm  IS+AS+MC+SS-TuA3  Microfluidic Cell for In Situ Scanning 
Electron Microscopy of Hydrated Dynamic Systems, Christopher 
Brown, A. Yulaev, A. Kolmakov, National Institute of Standards and 
Technology (NIST) 
The ability to conduct nanoscale imaging of fluid hydrated dynamic 
systems is a long sought goal within the scientific community. While 
improvement of commercial instrumentation and environmental cells has 
enabled in situ imaging of fluid hydrated systems using transmission 
electron microscopy (TEM) at the nanoscale, additional opportunities exist 
in implementing in situ techniques within scanning electron microscopy 
(SEM) instruments equipped with fluidic cells. Factors that motivate this 
work include: ubiquity and reduced cost of SEM instrumentation compared 
to TEM, drastically reduced restrictions on the sample size, and greater 
flexibility of systems and detectors designed for the SEM compared to 
TEM. 

In this communication we report on development of the microfluidic 
environmental cell designed for in situ studies of fully hydrated dynamic 
objects. We describe strategies and experimental results that enable 
improved in situ imaging using the SEM, including development of electron 
transparent graphene windowed devices that increase signal-to-noise ratio 
of images of fluid hydrated objects. Limiting factors of in situ imaging of 
hydrated samples within the SEM are discussed including radiolysis and 
decreased electron beam penetration into liquid cells compared to higher 
acceleration voltage electron microscopy modalities.  

3:20pm  IS+AS+MC+SS-TuA4  Liquid Jet –X-ray Photoelectron 
Spectroscopy and MD Simulations indicate that Li Cations in Aqueous 
Solutions Exhibit High Surface Propensity, Kathryn Perrine, M.H.C. 
Van Spyk, M.J. Makowski, A.C. Stern, K. Parry, D.J. Tobias, University of 
California Irvine, A. Shavorskiy, H. Bluhm, Lawrence Berkeley National 
Laboratory, B. Winter, Helmholtz-Zentrum Berlin für Materialien und 
Energie/Elektronenspeicherring BESSY II, Germany, J.C. Hemminger, 
University of California Irvine 
Ions impact chemistry at the aqueous liquid/vapor interface in 
environmental chemistry, electrochemistry and biomolecular chemistry. 
Ions are characterized as structure makers or breakers for protein mixtures, 
and the trend is known as the Hofmeister series.1 The Born electrostatic 
model of ions at interfaces has shown that ions should be repelled from the 
liquid/vapor interface due to a decrease in free energy when solvation by 
water occurs.2 Molecular dynamic (MD) simulations and recent 
experimental studies have shown that anions tend to adsorb to the liquid 
interface in an inverse Hofmeister trend.3, 4 Our synchrotron based XPS 
studies carried out over the last five years have provided experimental 
evidence that most cations follow classical ionic solution behavior and are 
repelled from the liquid/vapor interface, whereas some anions exhibit 
significant propensity for the surface. In this talk we present our recent 
experiments on Li salt solutions. Our experiments indicate that unlike larger 
cations, Li+ is not repelled from the interface and has a significant surface 
propensity. 

Liquid jet-X-ray photoelectron spectroscopy (LJ-XPS) is used to explore 
the relative ion concentrations at different depths in aqueous salt solutions. 
Low photoelectron kinetic energies are used to probe the surface of 
solutions yielding relative ionic concentrations that are present at the 
liquid/vapor interface. Higher photoelectron kinetic energies probe deeper 
into the bulk of aqueous solutions. The relative ionic concentrations of 
solutions prepared from lithium halide salts are compared to potassium 
halide solutions at different depths. MD simulations support our studies and 
suggest that Li+ cations have interfacial propensity due to factors such as the 
tight water solvation shell on the Li+ ions. Density profiles reveal anion and 
Li+ ion adsorption to the liquid/vapor interface. In addition, we also 
compare various concentrations of KI and LiI aqueous solutions to 
determine ion adsorption at the aqueous interface. 

1. K. D. Collins and M. W. Washabaugh, Quarterly Reviews of Biophysics, 
1985, 18, 323-422. 

2. M. Born, Zeitschrift Fur Physik, 1920, 1, 45-48. 

3. P. Jungwirth and D. J. Tobias, Journal of Physical Chemistry B, 2002, 
106, 6361-6373. 

4. D. J. Tobias, A. C. Stern, M. D. Baer, Y. Levin and C. J. Mundy, Annual 
Review of Physical Chemistry, Vol 64, 2013, 64, 339-359. 

4:20pm  IS+AS+MC+SS-TuA7  Complementary Microscopy and 
Spectroscopy Investigations of the Initial Oxidation Stages of Binary 
Alloy Thin Films, Judith Yang, University of Pittsburgh INVITED 
The transient stages of oxidation  from the nucleation of the metal oxide to 
the formation of the thermodynamically stable oxide  represent a 
scientifically challenging and technologically important terra incognito. 
These issues can only be understood through detailed study of the relevant 
microscopic processes at the appropriate length scale in situ. We are 
studying the dynamics of the initial and transient oxidation stages of a metal 
and alloys with complementary in situ methods - ultra-high vacuum (UHV) 
transmission electron microscopy (TEM) and X-ray photoelectron 
spectroscopy (XPS). We have previously demonstrated that the formation 
of epitaxial Cu2O islands during the transient oxidation of Cu and Cu-Au 
thin films bear a striking resemblance to heteroepitaxy, where the initial 
stages of growth are dominated by oxygen surface diffusion and strain 
impacts the evolution of the oxide morphologies. We are presently 
investigating the early stages of oxidation of binary alloys where both 
elements compete to oxidize. Specifically, we are studying Cu-Ni and Ni-Cr 
single crystal thin films as a function of relative concentration, oxygen 
partial pressures and temperatures. For Cu-Ni oxidation, the addition of Ni 
causes the formation Cu2O and/or NiO where the oxide type(s) and the 
relative orientation with the film depend on the Ni concentration, oxygen 
partial pressure and temperature. For Ni-Cr model alloys containing 4, 8 
and 16 at.% Cr and isothermally oxidized at 600°C and 10-7 to 10-3 torr O2 
pressure, our XPS experiments reveal that after 2 min of oxidation only 
Cr2O3 forms on the surface of all three alloys. However, with further 
exposure (i.e., 30 min or 2 h), a competitive growth between Cr2O3 and 
NiO under all the tested conditions is clear. These XPS data are remarkable 
results, since prior studies reported in the literature suggest that NiO + 
internal Cr2O3 or NiO/NiCr2O4/Cr2O3+ internal Cr2O3 should form at 
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least for the lower Cr content (4 and 8%) alloys. These experiments will be 
complemented with electron microscopy of scale cross sections to better 
understand the competitive nucleation and growth processes as a function of 
the oxygen partial pressure. 

5:00pm  IS+AS+MC+SS-TuA9  Direct Observation of Structure 
Controlled Carbon Growth by Environmental TEM, J. Kling, T.W. 
Hansen, Jakob Wagner, Technical University of Denmark INVITED 
In order to meet the increasing demand of faster and more flexible 
electronics and optical devices and at the same time decrease the use of the 
critical metals, carbon based devices are in fast development. Furthermore, 
the rich resource of carbon element limits the need for recycling and the 
material supports the friendly environment approach. 

Layered carbon structures spanning from graphene to few layered graphite 
are used for extremely compact devices with outstanding performance [1,2]. 
A relative cheap and easy way to produce layered carbon structures on the 
large scale is via chemical vapor deposition (CVD) growth on catalysts like 
copper and nickel. However, the exact growth mechanism is still under 
debate and is most likely dependent on precursor pressure and growth 
temperature. 

Here, we have used environmental transmission electron microscopy 
(ETEM) to follow the growth of layered structures directly at the atomic 
level and thereby coupling growth rate and quality of the material on the 
local scale to the growth parameters. Acetylene and methane are exposed to 
the catalyst (Ni or Cu) in situ in the microscope at pressures ranging from 
0.1Pa 100Pa at temperatures ranging from 500-700C. Following the 
subsequent appearance of carbon layers allows for determination of instant 
growth rates under controlled conditions. 

Single walled carbon nanotube (SWCNT) based electronics is another way 
of addressing the environment friendly approach of faster and better 
electronics. In order to exploit the potential of SWCNTs in the electronic 
industry fully, selective growth of either conducting or semiconducting 
tubes is of high importance. Growing the tubes in situ in the ETEM under 
relevant growth conditions gives fundamental insight in the parameters 
controlling the chirality and thereby the electronic properties of the 
SWCNTs. 

References:  

[1] K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. a. 
Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, 
D. Jiang, J. Giesbers, E. W. Hill, and a. K. Geim, Phys. Status Solidi 244, 
4106 (2007). 

[2] F. Schwierz, Proc. IEEE 101, 1567 (2013).  

5:40pm  IS+AS+MC+SS-TuA11  In Situ Energy Loss Spectroscopy, A 
Novel Approach to the Characterization of Surfaces during MBE 
Growth, Philippe Staib, Staib Instruments, Inc. 
A new energy analyzer for Auger Electron Spectroscopy (AES), the Auger 
Probe, is able to operate in growth vacuum chambers to measure in-situ 
during growth the composition of the surface [1,2,3]. The primary beam is 
provided by the RHEED electron gun at a very grazing incidence angle (2 
to 3 degrees). The analyzer is also used in EELS mode to measure 
Characteristic Energy Losses (CEL). The use of a grazing incidence angle 
strongly enhances the strength of the energy losses peaks, which become 
more prominent than the elastic line  

EELS data from the Auger Probe are presented showing the evolution of the 
CEL distributions during oxidation (ZnO), during thermal de-oxidation of 
GaSb, and during growth of binary and ternary materials ( GaAsSb ). 
Surprisingly, even during deposition of homoepitaxial layer, the CEL 
distribu tions show a marked dependence upon the flux of material to the 
sample which can reflect the formation of physi- rather than chemisorbed 
layers and the smoothness of the surface [4]. 

The CEL spectra cannot be interpreted simply, due to the strong 
overlapping of multiple excitations of single energy losses. A model is 
presented that takes into account the probability distribution for multiple 
losses, and allows extraction of the el ementary energy loss lines from the 
distribution. Using this model, ac curate energy loss values can be measured 
and an effective electron density can be calculated. The intensity of the 
extracted energy losses versus the intensity of the elastic peak is a measure 
of the ratio d/ l between the electron path length d and mean inelastic free 
path l of the specific loss. The inelastic mean free path for each loss line can 
be deducted using d values from monte-carlo simulation of the electron 
trajectories and the intensity ratio of the loss peak vs. elastic peak. 

Special thanks to S. Svensson and W. Sarney of ARL for their collaboration 
during measurements used in this work.  

This work is funded in part by ARO (STTR Phase I - W911NF-13-P-
0021A13A-011-0305). 
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Koster and G. Rijnders, Woodhead Publishing In Materials, (2011) 

[4] Strawbridge B., Shinh RK.,Beach C.,Mahajan S., Newman N., J. Vac. 
Sci. Technol. A 24 (5) 1776 (2006) .  

6:00pm  IS+AS+MC+SS-TuA12  Selective Staining for Enhanced 
Spectroscopic Identification of Domains in Immiscible Polymer Blends 
by Micro-Raman Spectroscopy, Nicholas Heller, C.R. Clayton, SUNY 
Stony Brook, S.L. Giles, J.H. Wynne, Naval Research Laboratory, M.J. 
Wytiaz, M.E. Walker, Sherwin-Williams Company 
Blends of incompatible polymers combined with fillers and pigments were 
used to produce unique low reflectance thermoset coatings. Understanding 
the origins of low reflectance from the coatings was approached through 
microscopy, thermal analysis and spectroscopic analysis of both pigmented 
and control clear coatings. Polymeric phase separation was confirmed by 
the presence of two distinct glass transition temperatures. Microscopy 
revealed random surface features for the pigmented coatings. Therefore, the 
pigments and fillers were removed to observe the polymer-polymer 
interactions within the blend under curing conditions. Identification of the 
polymeric domains was obtained using Raman spectroscopy mapping of 
cross-section samples embedded within a polyester resin. Cross-section 
samples of coatings were utilized to isolate encapsulated polymer domains 
from the continuous polymer network to minimize spectral averaging from 
both domains. Raman analysis of the blends was compared to cured films 
generated using the individual resins. The embedding process produced a 
marker peak in one phase and in one individual resin. The marker peak was 
found to be from styrene monomer and was found to selectively bind to one 
component of the polymer blend, based on polar and hydrogen bonding 
characteristics.. 
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