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2:20pm  IS+2D+MC+NS+SP+SS-WeA1  In Situ Studies of Model Fuel 
Cells, Zhi Liu, Lawrence Berkeley National Laboratory INVITED 
The ambient pressure x-ray photoelectron spectroscopy (AP-XPS) 
endstations based on differentially pumped electron energy analyzers have 
been recognized by scientific communities as an important in-situ tool to 
study water, environmental science, catalysis and many other important 
fields. Multiple new AP-XPS endstations are currently under planning or 
development at US and international synchrotron light sources. Recently we 
have installed a new hard x-ray AP-XPS endstation at ALS Beamline 9.3.1 
(2.5keV- 5keV). By using X-ray up to 5KeV, we can perform AP-XPS at a 
pressure up to 110 torr. The probing depth of photoelectrons also increases 
to >10 nm, which will allow us to study not only the gas/solid interface but 
also the liquid/solid interface. In this talk, I will give an overview of science 
projects at ALS BL9.3.2 in heterogeneous catalysis and electro-chemistry 
using these new systems. Furthermore, I will present results of our in-situ 
study on the electrolyte/electrode interface of a working model 
electrochemical cell at ALS BL9.3.1. We believe the successful 
development of soft and hard X-ray APXPS endstations will provide energy 
research community a powerful in-situ tool to directly study the 
electrolyte/electrode interface of many important electrochemical devices. 

3:00pm  IS+2D+MC+NS+SP+SS-WeA3  Probing of Nanoscale Objects 
in Reactive Liquids through Membranes using Near-Field Microwave 
Microscopy, Alexander Tselev, Oak Ridge National Laboratory, A. 
Komakov, National Institute of Standards and Technology (NIST) 
Many functional objects (and interfaces) have to be studied in situ when the 
object is immersed in liquid environment. In addition, for energy, chemical, 
(bio-) medical and other applications, there is a need to study the 
encapsulated objects, which otherwise can be chemically reactive or toxic. 
These samples are often mesoscopically small or exist in minuscule 
quantities. Recently, we have developed a process for preparation of liquid-
filled cells sealed with ultrathin membranes. Such cells can be implemented 
for in-situ studies using, for example, electronor soft x-ray microscopy due 
to a high transparency of these membranes to electron beams. However, in 
many cases electron microscopy is an invasive technique due to various 
electron beam induced parasitic effects (e.g. radiolysis or beam induced 
deposition). To overcome these impediments, we demonstrate the scanning 
microwave impedance microscopy (sMIM) to image different nanoscale 
objects immersed in the liquid environment through 30 nm SiN membranes. 
In the sMIM, microwaves of a frequency of 3 GHz are sent through a 
coaxial cable connected to a shielded cantilever probe fully compatible with 
an AMF microscope. The sharp probe tip provides “focusing effect” for the 
electric component of the microwave. For imaging, the tip is brought into 
gentle mechanical contact with a membrane. Amplitude and phase of 
microwaves reflected from the probe are monitored. Since the wave 
reflection is dependent on the tip-sample system impedance, reflected 
waves carry information about sample local properties. The effective 
distance into the sample depth, where the tip-induced field enhancement 
takes place, is approximately equal to the tip apex radius. Since the 
membrane thickness is smaller compared to the tip radius of a typical probe 
(about 50 nm for a fresh tip), the tip-sample impedance is dependent on the 
dielectric properties of the material beneath membrane, and therefore, it is 
possible to “see” through the membrane. We demonstrate imaging of 
different combinations of model liquids and nanoparticles: water and water-
based solutions (ε~80), organic solvents (ε~10-25), and oils (ε~2-3) 
containing Ni metal, polystyrene (ε~2.5) and PbO (ε~25) particles. This 
technique can be further implemented for a broad range of objects in 
confined liquids, and can be used to monitor interfacial electrochemical 
reactions. Imaging with sMIM was performed at CNMS, which is 
sponsored at ORNL by the SUFD, BES, US DOE. 

4:20pm  IS+2D+MC+NS+SP+SS-WeA7  Caught in the Act! Live 
Observations of Catalysts Using High-Pressure Scanning Probe 
Microscopy, Irene Groot, Huygens-Kamerlingh Onnes Laboratory, Leiden 
University, Netherlands INVITED 
Recently it has become clear that essential differences can exist between the 
behavior of catalysts under industrial conditions (high pressure and 
temperature) and the (ultra) high vacuum conditions of traditional 
laboratory experiments. Differences in structure, composition, reaction 

mechanism, activity, and selectivity have been observed. These 
observations indicated the presence of the so-called pressure gap, and made 
it clear that meaningful results can only be obtained at high pressures and 
temperatures. However, most of the techniques traditionally used to study 
catalysts and their reactions were designed to operate under (ultra) high 
vacuum conditions. To bridge the pressure gap, the last years have seen a 
tremendous effort in designing new instruments and adapting existing ones 
to be able to investigate catalysts in situ under industrially relevant 
conditions.  

This talk focuses on the development of scanning probe microscopy for 
operando observations of active model catalysts. In our group, we have 
developed set-ups that combine an ultrahigh vacuum environment for model 
catalyst preparation and characterization with a high-pressure flow reactor 
cell, integrated with either a scanning tunneling microscope or an atomic 
force microscope. With these set-ups we are able to perform atomic-scale 
investigations of well-defined model catalysts under industrial conditions. 
Additionally, we combine the structural information from scanning probe 
microscopy with time-resolved mass spectrometry measurements on the gas 
mixture that leaves the reactor. In this way, we can correlate structural 
changes of the catalyst due to the gas composition with its catalytic 
performance.  

This talk highlights a short overview of the instruments we developed and 
illustrates their performance with results obtained for different model 
catalysts and reactions. As a proof of principle, results for the fruit fly of 
surface science, i.e. CO oxidation, will be shown. But additionally, results 
for more complex reactions such as NO reduction, Fischer-Tropsch 
synthesis, desulphurization, and production of chlorine will be discussed.  

5:00pm  IS+2D+MC+NS+SP+SS-WeA9  X-ray Photoelectron 
Spectroscopy Studies of H2O Dissociation on Pre-oxidized Al (111) and 
Cu (111) Single Crystal Surface, Qianqian Liu, SUNY, Binghamton 
University, X. Tong, Brookhaven National Laboratory, G.W. Zhou, SUNY, 
Binghamton University 
Dissociation of H2O molecules on ultrathin oxide overlayers formed on 
metal surfaces plays a critical role in many catalytic reactions. However, the 
effects of chemical states and thickness of oxide overlayers on the 
microscopic process of H2O dissociation are still poorly understood. In this 
work, X-ray photoelectron spectroscopy (XPS) is employed to study H2O 
dissociation on oxidized Al (111) and Cu (111) surfaces with controlled 
chemical states and thicknesses of the oxide films. For Al (111), the 
experiment was performed under two water vapor pressures (10-6 Torr and 5 
Torr) on aluminum oxide films with the thicknesses varying from 2.47 Å to 
5.14 Å; for Cu (111), the experiment was performed by varying the water 
vapor pressure from 10-7 Torr to 10-5 Torr and temperature from 100°C to 
450°C on the oxide film with a constant thickness. Al (2p), Cu (2p), Cu 
(LMM) and O (1s) spectra were monitored by XPS after each oxygen 
exposure followed by subsequent H2O exposure. Upon exposing the oxide 
to water vapor, the O (1s) peak shifts to a higher energy and becomes 
broader. A detailed analysis of the spectra indicates that H2O molecules 
dissociate into OH groups for both oxidized Al and Cu surfaces. However, 
the subsequent reaction of OH groups with the oxide films on Cu (111) and 
Al (111) surfaces are dramatically different. On the oxidized Al(111) 
surface, OH is further incorporated into the aluminum oxide that results in 
the thickening of the oxide film, whereas on the oxidized Cu (111) surface, 
OH works as a reducing agent to remove oxygen from the oxide film that 
results in the thinning of the Cu oxide film. The microscopic processes 
underlying the differences in H2O dissociation on oxidized Al (111) and Cu 
(111) will be described in detail.  

5:20pm  IS+2D+MC+NS+SP+SS-WeA10  Operando APXPS of the 
Liquid-Solid Interface: Au Oxidation, Ethan Crumlin, S.A. Axnanda, 
P.N.R. Ross, Z.L. Liu, Lawrence Berkeley National Laboratory 
Interfaces play an important role for many reaction processes and are 
essential for electrochemistry. Electrochemical systems ranging from high 
temperature solid oxide fuel cells (SOFC) to lithium ion batteries to 
capacitors have a wide range of important interfaces between solids, liquids, 
and gases which play a pivotal role in how energy is stored, transferred, 
and/or converted. Previous capabilities of ambient pressure X-ray 
Photoelectron Spectroscopy (APXPS) have primarily only been able to 
observe the gas-solid and gas-liquid interfaces. However, recent 
enhancements now enable new APXPS systems to work at pressures larger 
then 20 Torr, and utilize ‘Tender’ X-rays (2.5 – 7 keV). These features 
provide new capabilities and opportunities for probing the liquid-solid and 
solid-solid interfaces. Using synchrotron X-rays at Lawrence Berkeley 
National Laboratory, the Advanced Light Source and our ‘Tender’ X-ray 
APXPS endstation that is outfitted with various in situ/operando features 
such as electrical leads to apply electrical potentials and operates at 
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pressures >20 Torr, to observe the liquid-solid interface of a gold foil 
electrode that has been immersed and partially removed from a liquid 
electrolyte. This talk will provide details on how we used this technique to 
probe liquid-solid interface and in real-time observe the oxidation of the 
gold foil electrode under varying applied potentials and different electrolyte 
solutions. 

5:40pm  IS+2D+MC+NS+SP+SS-WeA11  Water on ZnO(10-10) 
Investigated by Ambient Pressure X-ray Photoelectron Spectroscopy, 
Chris Goodwin, University of Delaware, A. Boscoboinik, Brookhaven 
National Lab, C. Arble, J.T. Newberg, University of Delaware 
The extent to which ZnO hydroxylates under ambient conditions can 
significantly influence catalytic properties. Thus, it is critical to understand 
the composition of different ZnO terminations as a function of relative 
humidity (RH) in order to elucidate the true interfacial surface terminations. 
In this talk we present results of ambient pressure XPS (APXPS) for water 
exposures to a ZnO(10-10) single crystal. It will be shown that ZnO(10-10) 
extensively hydroxylates at the interface, and both molecular and 
dissociative water increase as the RH increases. These results are consistent 
with simulations in the literature that highlight the efficacy for ZnO(10-10) 
to dissociate water. 
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