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2:20pm  HI+2D+AS+MC-ThA1  Helium Ion Microscopy (HIM) 
Technology for Imaging, Characterization, and nano-Fabrication for 
nano-Device Materials and Structures, Shinichi Ogawa, NeRI, AIST, 
Japan INVITED 
Several unique applications of a helium ion microscopy (HIM) technology 
have been studied. In comparison with electron, helium ion has larger cross 
section, and it realized HIM observation with less current because of higher 
efficiency of secondary electron generation with maximum distribution 
energy of 1 eV [1], a few eV in a SEM case, for imaging, which results in 
less power implant (less thermal damage input) into samples. Utilizing these 
features, a low dielectric constant material pattern of 70 nm line with less 
deformation (thermal damage) and a Cu metal line underneath a 130 nm 
dielectric of band gap of a few eV were imaged [2]. Luminescence from a 
SiO2 sample was detected at imaging conditions [3], in which no damage 
was observed by a transmission electron microscopy (TEM) - electron 
energy loss spectroscopy method [4]. As one of nano-fabrication 
applications, we found that a helium ion irradiation using the HIM 
functionalizes a gate control of carrier conduction in a single-layer graphene 
at an appropriate amount of helium ion dose to graphene which enable gate 
bias control of current with an on-off ratio of two orders of magnitude at 
room temperature [5], [6]. A few nm diameter tungsten particles were 
deposited onto a TEM sample under the helium ion beam irradiation in 
W(CO)6 gas atmosphere with high special resolution accuracy, which 
realized precise electron tomography and re-construction [7], and tungsten 
pillars of a few um height with 40 nm diameter were formed with a straight 
hole of a few nm diameter through a center of the pillars [8]. The research 
on graphene material is granted by JSPS through FIRST Program initiated 
by CSTP. 
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Phys., 49 111501 (2011), [5] S. Nakaharai, T. Iijima, S. Ogawa, H. 
Miyazaki, S. Li, K. Tsukagoshi, S. Sato, and N. Yokoyama, Appl. Phys. 
Express, 5 015101 (2012), [6] S. Nakaharai, T. Iijima, S. Ogawa, S. Suzuki, 
S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama, ACS Nano, 7 (2013) 5694-
5700, [7] M. Hayashida, T. Iijima, T. Fujimoto and S. Ogawa, Micron 43, 
992-995 (2012), [8] K. Kohama, T. Iijima, M. Hayashida, and S. Ogawa, J. 
Vac. Sci.Technol. B 31 (3), 031802 (2013) 

3:00pm  HI+2D+AS+MC-ThA3  MEMS Temperature Controlled 
Sample Stage for the Helium Ion Microscope, Jose Portoles, P.J. 
Cumpson, Newcastle University, UK 
The Helium microscope allows the imaging of samples with magnifications 
beyond those of electron microscopes with the added advantages of directly 
imaging insulators without being so critically dependent on a need to 
conductive coating the samples. This facilitates the imaging of for instance 
organic structures without the need of surface modification. The large depth 
of focus allows simultaneously focusing details of the sample at different 
depths. When using a temperature controlled stage this allows the samples 
to stay focused as thermal expansion produces vertical displacements of the 
sample surface, however due to the large magnifications in-plane thermal 
expansions are still an issue. We have investigated a solution based on a 
thermally actuated X-Y MEMS stage by exploiting the ability of MEMS 
actuators to provide smooth electronic control of lateral displacements in 
the micron range in order to compensate for lateral thermal expansion at the 
point of observation. The difficulties involved in producing relatively large 
out of plane displacements with a MEMS device can be neglected due to the 
large instrumental depth of focus. The device we present has been 
fabricated using a “silicon on insulator” (SOI) MEMS process, and can be 
driven at low voltages and currents using a standard vacuum feedthrough to 
the instrument's analysis chamber and compensate lateral thermal expansion 
in order to keep any spot on a small specimen in the field of view at high 
magnifications. The small size of the heating stage makes it rapid in its 
thermal response. 

3:20pm  HI+2D+AS+MC-ThA4  Monte Carlo Simulations of Focused 
Neon Ion Beam Induced Sputtering of Copper, Rajendra Timilsina, P.D. 
Rack, The University of Tennessee Knoxville, S. Tan, R.H. Livengood, Intel 
Corporation 
A Monte Carlo simulation has been developed to model the physical 
sputtering and nanoscale morphology evolution to emulate nanomachining 
with the Gas Field Ion Microscope. In this presentation, we will present 
experimental and simulation results of copper vias milled by a focused neon 
ion beam. Neon beams with a beam energy of 20 keV and a Gaussian beam 
profile with full-width-at-half-maximum of 1 nm were simulated to 
elucidate the nanostructure evolution during the physical sputtering of high 
aspect ratio features. In this presentation we will overview our simulation 
attributes which includes an evolving real-time sputtered via profile 
considering both thesputtered and re-deposited material. The sputter yield 
and sputter profile vary with the ion species and beam parameters and are 
related to the distribution of the nuclear energy loss in the material. We will 
also illustrate how the effective sputter yield is aspect-ratio dependent due 
to the change in the effective escape angle of the sputtered species. 
Quantitative information such as the sputtering yields, dose dependent 
aspect ratios and resolution-limiting effects will be discussed. Furthermore, 
we will show that the calculated nuclear energy loss and implant 
concentration ahead of the sputtering front correlates to observed damage 
revealed by transmission electron microscopy.  

4:00pm  HI+2D+AS+MC-ThA6  Circuit Edit Nanomachining Study 
using Ne+ & He+ Focused Ion Beam, Richard Livengood, S. Tan, Intel 
Corporation INVITED 
FIB nanomachining has been used extensively for over 20 years for the 
purpose of rewiring integrated circuits to validate design changes, isolate 
process faults, and generate engineering samples. During this time frame, 
the minimum feature size of an IC (Moore’s Law) has scaled from 500nm 
to 14nm (36X) compared with ~6X scaling of Ga+ FIB. As a result FIB 
nanomachining capabilities have been steadily erroding over the last several 
generations, limiting the types of circuit modifications that can be 
sucessfully completed. There are however, several promising new ion beam 
scaling R&D initiatives that provide hope of enabing further nanomachining 
scaling into the sub 10nm process node.  

One such technology is GFIS (gas field ion source) technology. He+ GFIS 
based FIBs have been successfully used to image with sub 0.5nm resolution 
and nanomachine sub 10 nm structure in Au, Graphine, and other thin film 
structures.[1, 2, 3] More recently He+ and Ne+ GFIS sputtering properties 
have been studied for nanomachining in bulk semiconductor films.[4] In 
this paper, we will show our latest results on GFIS FIB GAE (gas assisted 
etch) nanomachining and IBID properties and electrical invasiveness 
impact.  
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4:40pm  HI+2D+AS+MC-ThA8  Evaluation of EUV Resist Performance 
below 20-nm CD using Helium Ion Lithography, D.J. Maas, TNO 
Technical Sciences, Netherlands, Nima Kalhor, TU Delft, Netherlands, W. 
Mulckhuyse, E. van Veldhoven, TNO Technical Sciences, Netherlands, A. 
van Langen–Suurling, P.F.A. Alkemade, TU Delft, Netherlands, S. Wuister, 
R. Hoefnagels, C. Verspaget, J. Meessen, T. Fliervoet, ASML, Netherlands 
For the introduction of EUV lithography, development of high performance 
EUV resists is of key importance. This development involves studies into 
sensitivity, resolving power and pattern uniformity. We have used a sub-
nanometer-sized 30 keV helium ion beam to expose chemically amplified 
(CAR) EUV resists.  

There are remarkable similarities in the response of resists to He+ ions and 
EUV photons. Both primary particle beams traverse the resist and 
meanwhile interact with the target atoms. The low backscattering of the He+ 

ions results in ultra-low proximity effects, which is similar to EUV 
exposure s . Absorption of an EUV photon creates a high-energy electron 
that relaxes by the excitation of Secondary Electrons (SEs). A collision of a 
20-30 keV helium ion with a target atom directly releases low-energy SEs. 
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Each ion scatters several times in the resist layer, thus enabling resist 
exposures at very low doses per CH . The energy spectra of SEs generated 
by EUV and He+ are remarkably alike. These SEs, in turn, activate the 
resist.  

In this paper we show 30 keV He+ ions exposures of contact holes and lines 
with a CD of 8 – 30 nm at 20 nm half-pitch in a chemically amplified EUV 
resist. We will demonstrate the potential of using He+ ion lithography [1,2] 
in the study of EUV resists. 

[1] V. Sidorkin et al., Sub-10-nm nanolithography with a scanning helium 
beam, J. Vac. Sci. Technol. B 27, L18 (2009) 

[2] D. Maas et al., Evaluation of EUV resist performance below 20nm CD 
using helium ion lithography, SPIE Proc. 9048, 90482Z (2014) 

5:00pm  HI+2D+AS+MC-ThA9  Helium Ion Beam Lithography for 
Nanoscale Patterning, X. Shi, University of Southampton, UK, D.M. 
Bagnall, University of New South Wales, UK, Stuart Boden, University of 
Southampton, UK 
Electron beam lithography (EBL), the modification of thin films of resist by 
a focused beam of electrons to create a pattern that is subsequently 
transferred into the substrate, is a key technology in the development of 
nanoscale electronic devices. However, with the demand for ever smaller 
features and pattern dimensions, new lithographic techniques are required to 
extend beyond existing limits of EBL. One such emerging technology is 
helium ion beam lithography (HIBL), driven by the development of the 
helium ion microscope, a tool capable of producing a high intensity beam of 
helium ions focused to a sub-nanometer spot [1]. Preliminary studies on 
HIBL using typical EBL resist materials such as PMMA and HSQ have 
shown that HIBL has several advantages over EBL, including a smaller spot 
size (potentially leading to higher resolution patterning) and a decrease in 
the exposure dose required and so the potential for faster pattern definition 
and therefore higher throughput. Furthermore, proximity effects, which are 
caused by beam scattering leading to inadvertent exposure of surrounding 
material, and are problematic when producing high density patterns in EBL, 
are massively reduced in HIBL [2], [3]. 

Here, the latest results from an experimental investigation into the HIBL 
technique will be presented. Areas of PMMA films of various thicknesses 
are exposed to different helium ion doses. After subsequent development in 
MIBK/IPA, atomic force microscopy is used to measure residual layer 
thickness in order to generate exposure response curves for different initial 
thicknesses of resist. High sensitivity is confirmed with full exposure of 50 
nm thick layers achieved with a helium ion dose of only ~2 µC/cm2. 
Experiments to characterise minimum feature size and proximity effects are 
currently underway. The use of other high resolution resists will also be 
investigated with the aim of providing a thorough assessment of the 
capabilities and limitations of this emerging nano-patterning technique. 

[1] L. Scipioni, L. A. Stern, J. Notte, S. Sijbrandij, and B. Griffin, “Helium 
Ion Microscope,” Adv. Mater. Process., vol. 166, pp. 27–30, 2008. 
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2706, 2009. 
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helium beam,” J. Vac. Sci. Technol. B., vol. 27, no. 4, p. L18, 2009. 

5:20pm  HI+2D+AS+MC-ThA10  Sub-100nm Nanofabrication using 
Helium and Neon Ion Beams, James Sagar, C. Nash, N. Braz, T. Wootton, 
M.J.L. Sourribes, T.-T. Nguyen, R.B. Jackman, P.A. Warburton, London 
Centre for Nanotechnology, UK 
Sub-100nm Nanofabrication using Helium and Neon Ion Beams 

J. Sagar1, C. R. Nash1, N. Braz1,2, T. Wootton1,2, M. J. L. Sourribes1,2, T.-T. 
Nguyen1,2, R. B. Jackman1,2, and P. A. Warburton1,2 
1London Centre for Nanotechnology, University College London, 17-19 
Gordon Street, London, WCH1 0AH, UK  
2Department of Electrical and Electronic Engineering, University College 
London, London, WC1E 7JE, Uk 

Using a Zeiss Orion NanoFab we have created sub-100nm devices for 
experiments in quantum electronics and nanophotonics. The Orion NanoFab 
has the ability form an ion beam with either helium or neon gas. This makes 
the Nanofab a much more versatile instrument for nanofabrication since 
large area mills can be performed using Ne without the need for a Ga FIB 
column. The use of a Ne gas field ion source (GFIS) in the Orion NanoFab 
allows fabrication of sub-100nm devices on timescales comparable to that 
of conventional liquid Ga FIB but with considerably enhanced fidelity due 
to an increased sputter yield (ten times greater than that of He) whilst 
retaining a small probe size (≤ 5nm). Using a Ne ion beam we have 

fabricated two kinds of nanoscale superconducting devices: a 
superconducting nanowire based on a compound low-TC superconductor; 
and an array of nanoscale Josephson junctions based on a compound oxide 
high-TC superconductor. The use of an inert-gas ion species in these devices 
is extremely important as Ga implantation into superconducting materials 
has previously been shown to suppress superconductivity. The extremely 
small probe size of the He GFIS has allowed us to create sub-20nm 
apertures in a variety of materials. Sub-20nm apertures in InAs nanowires 
and in graphene have been fabricated for experiments in quantum coherent 
electronics and quantum nanophotonics respectively.  



 3 Author Index 

Authors Index 
Bold page numbers indicate the presenter 

—	A	— 
Alkemade, P.F.A.: HI+2D+AS+MC-ThA8, 1 

—	B	— 
Bagnall, D.M.: HI+2D+AS+MC-ThA9, 2 
Boden, S.A.: HI+2D+AS+MC-ThA9, 2 
Braz, N.: HI+2D+AS+MC-ThA10, 2 

—	C	— 
Cumpson, P.J.: HI+2D+AS+MC-ThA3, 1 

—	F	— 
Fliervoet, T.: HI+2D+AS+MC-ThA8, 1 

—	H	— 
Hoefnagels, R.: HI+2D+AS+MC-ThA8, 1 

—	J	— 
Jackman, R.B.: HI+2D+AS+MC-ThA10, 2 

—	K	— 
Kalhor, N.: HI+2D+AS+MC-ThA8, 1 

—	L	— 
Livengood, R.H.: HI+2D+AS+MC-ThA4, 1; 

HI+2D+AS+MC-ThA6, 1 

—	M	— 
Maas, D.J.: HI+2D+AS+MC-ThA8, 1 
Meessen, J.: HI+2D+AS+MC-ThA8, 1 
Mulckhuyse, W.: HI+2D+AS+MC-ThA8, 1 

—	N	— 
Nash, C.: HI+2D+AS+MC-ThA10, 2 
Nguyen, T.-T.: HI+2D+AS+MC-ThA10, 2 

—	O	— 
Ogawa, S.: HI+2D+AS+MC-ThA1, 1 

—	P	— 
Portoles, J.F.: HI+2D+AS+MC-ThA3, 1 

—	R	— 
Rack, P.D.: HI+2D+AS+MC-ThA4, 1 

—	S	— 
Sagar, J.: HI+2D+AS+MC-ThA10, 2 
Shi, X.: HI+2D+AS+MC-ThA9, 2 
Sourribes, M.J.L.: HI+2D+AS+MC-ThA10, 2 

—	T	— 
Tan, S.: HI+2D+AS+MC-ThA4, 1; 

HI+2D+AS+MC-ThA6, 1 
Timilsina, R.: HI+2D+AS+MC-ThA4, 1 

—	V	— 
van Langen–Suurling, A.: HI+2D+AS+MC-ThA8, 

1 
van Veldhoven, E.: HI+2D+AS+MC-ThA8, 1 
Verspaget, C.: HI+2D+AS+MC-ThA8, 1 

—	W	— 
Warburton, P.A.: HI+2D+AS+MC-ThA10, 2 
Wootton, T.: HI+2D+AS+MC-ThA10, 2 
Wuister, S.: HI+2D+AS+MC-ThA8, 1 

 


