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Helium Ion Microscopy Focus Topic 
Room: 316 - Session HI+2D+AS+BI+MC-ThM 

Fundamental Aspects and Imaging with the Ion 
Microscope 
Moderator: Gregor Hlawacek, Helmholtz-Zentrum Dresden 
- Rossendorf, Stuart Boden, University of Southampton 

8:00am  HI+2D+AS+BI+MC-ThM1  He+ and Ne+ Ion Beam 
Microscopy and Microanalysis, David C. Joy, University of Tennessee, 
Oak Ridge National Laboratory INVITED 
After one hundred years of use the electron microscope is now being 
overtaken by ion beam systems because of their many advantages. A wide 
variety of different ions are available, each of which has its own particular 
strengths, but the two most commonly used at present are Helium (He+) and 
Neon (Ne+). Changing from one to the other takes only a couple of minutes 
to complete. for operation at beam energies between 20 and 50kV both He+ 
and Ne+ generate ‘ion induced secondary electrons’ (iSE) which yield 
images which are comparable with those from a conventional SEM but 
offer image resolutions of 0.4nm or less even on bulk samples, a much 
greater depth of field, and an enhanced signal to noise ratio. At typical 
imaging currents between 10-12 to 10-14Amps damage to most samples is 
very limited for He+ although more severe for Ne+ but at higher beam 
currents both He+ and Ne+ can pattern, deposit, or remove, a wide range of 
materials. In such applications He+ provides the best resolution, but Ne+ is 
much faster.  

The production of X-rays depends on the speed of the incident particle, not 
on its energy. At typical operating energies the He+ or Ne+ ions are 
traveling too slowly to generate X-rays so another approach is required for 
chemical microanalysis. The most promising option is “Time of Flight-
Secondary Ion Mass Spectrometry” (TOF-SIMS). Here the incoming ion 
“splashes” material from the top few layers of the specimen surface. These 
fragments are then characterized by determining their mass to charge ratios. 
The chemical data this generates is much more detailed than the bare list of 
elements that is produced by X-ray microanalysis. 

8:40am  HI+2D+AS+BI+MC-ThM3  Gas Field Ion Sources, Jason 
Pitters, R. Urban, National Institute for Nanotechnology, Canada, R. 
Wolkow, University of Alberta and The National Institute for 
Nanotechnology, Canada INVITED 
Single atom tips (SATs) prepared by the spatially controlled field assisted 
etching method are proving to have utility as ion sources, electron sources 
and in scan probe applications.  

As Gas Field Ion Sources (GFISs), there is potential for operation in 
scanning ion microscopes (SIMs) and our efforts to prepare and characterize 
SAT ion emission will be discussed. It will be shown that etching to a single 
atom tip occurs through a symmetric structure and leads to a predictable last 
atom. SATs can be prepared reproducibly with emission along a fixed 
direction for all tip rebuilds. It will also be shown that the emission 
properties of the SAT can be altered by shaping of the tip shank during the 
etching procedure. In this manner, the operating voltage can be controlled 
and a lensing effect of the tip base is demonstrated. During formation, the 
tip shape can be evaluated by using both helium and neon imaging gases. 
The stability of helium and neon ion beams generated by SATs will also be 
demonstrated and compared to other tip orientations. The remarkable 
robustness of these tips to atmosphere exposure will also be shown and the 
ability to prepare SATs from material other than tungsten will be 
demonstrated. 

SATs also have utility in electron emission. By shaping the tip 
appropriately, electron emission characteristics can also be tailored and the 
coherence properties of an SAT will be presented as deduced from 
holographic measurements in a low-energy electron point source 
microscope. Initial utility in scan probe experiments including atomic force 
microscopy and scanning tunneling microscopy will also be discussed. 

9:20am  HI+2D+AS+BI+MC-ThM5  Ion Beam Profiles Generated by 
W(111) Single Atom Tips, Radovan Urban, R. Wolkow, University of 
Alberta and The National Institute for Nanotechnology, Canada, J.L. 
Pitters, National Institute for Nanotechnology, Canada 
Single atom tips (SATs) gained significant attention over the past decade 
because they serve as high brightness, field emission electron sources and 
gas field ion sources (GFISs). Small virtual source size makes these 
attractive candidates for advanced scanning imaging applications such as 

SEM, TEM, and scanning ion microscopy (SIM) as well as for non-staining 
ion beam writing applications.  

The ion beam diameter σ, together with total ion current I generated by a 
single surface atom of W(111) nanotip, are crucial parameters which 
determine angular current density and brightness of gas field ion sources. It 
is, therefore, essential to understand underlying mechanisms that govern 
beam width. Furthermore, mapping both σ and I to a large parameter space 
of tip temperature, imaging gas pressure, and extraction voltage is necessary 
to optimize gas field ion source operation. In this contributions we will 
explore both σ and I as a function of temperature and extraction voltage at 
different imaging gas pressures using a field ion microscope (FIM) to 
monitor beam shape and total current. The qualitative model of our results 
will be also discussed. Finding “the best imaging voltage” for a SAT will be 
briefly discussed. 

9:40am  HI+2D+AS+BI+MC-ThM6  Defect Observation by using 
Scanning Helium Ion Microscopy, Hongxuan Guo, L. Zhang, D. Fujita, 
National Institute for Materials Science (NIMS), Japan 
Scanning helium ion microscopy (HIM) is an innovative method to 
characterize surface of various materials. With a secondary electron detector 
(SED) and a micro plate detector (CPD), Orion Plus system can obtain 
surface information including morphology , composition, and crystal 
orientation. [1, 2] Improve the abilities of characterization of materials with 
HIM will benefit the develop of new materials, such as structure materials 
including metals, ceramics and others.  

In this presentation, we will show the investigation of the crystal structure 
of metal with HIM. We prepared an sample stage with a reflector that can 
be used to obtain the transmission helium ions intensities in the samples. 
With this sample stage, we observed the Ni-Co base super alloy and aerogel 
composed with hollow nanosphere. The Rutherford backscattered image 
(RBI) of metal surface show different orientation of poly crystal. The nano-
twins and other defects in Ni-Co base superalloy were investigated by HIM 
in scanning and transmission mode. The nano-twins also be observed by 
other techniques, such as transmission electron microscopy and electron 
backscatter diffraction. The scattering of helium ions with different energy 
was analyzed. This work provide some new methods to improve the 
research on defects and structure of crystal. 

[1]. H. X. Guo, D. Fujita, Scanning helium ion microscopy, 
Characterization of Materials, 2rd Edition(Wiley, New York, 2012) 

[2]. H. X. Guo. J. H. Gao, M. S. Xu, D. Fujita, Applied Physics Letters, 
104, 031607 , 2014 

11:00am  HI+2D+AS+BI+MC-ThM10  Helium Ion Microscopy (HIM) 
for the Imaging of Biological Samples at Sub-nanometer Resolution, 
James Fitzpatrick, Salk Institute for Biological Studies INVITED 
Scanning Electron Microscopy (SEM) has long been the standard in 
imaging the sub-micrometer surface ultrastructure of both hard and soft 
materials. In the case of biological samples, it has provided great insights 
into their physical architecture. However, three of the fundamental 
challenges in the SEM imaging of soft materials are that of limited imaging 
resolution at high magnification, charging caused by the insulating 
properties of most biological samples and the loss of subtle surface features 
by heavy metal coating. These challenges have recently been overcome 
with the development of the Helium Ion Microscope (HIM), which boasts 
advances in charge reduction, minimized sample damage, high surface 
contrast without the need for metal coating, increased depth of field, and 5 
angstrom imaging resolution. We demonstrate the advantages of HIM for 
imaging biological surfaces as well as compare and contrast the effects of 
sample preparation techniques and their consequences on sub-nanometer 
ultrastructure. 

11:40am  HI+2D+AS+BI+MC-ThM12  Helium Ion Microscopy of 
Biological Cells, Natalie Frese, A. Beyer, M. Schürmann, B. Kaltschmidt, 
C. Kaltschmidt, A. Gölzhäuser, University of Bielefeld, Germany 
In this presentation HIM images of biological cells are presented. The 
presented study focuses on neuronal differentiated human inferior turbinate 
stem cells, mouse neurons and mouse fibroblasts. The cells were prepared 
by critical point drying or freeze drying and a flood gun was used to 
compensate charging, so no conductive coating was necessary. 

Therewith, extremely small features at native cell surfaces were imaged 
with an estimated edge resolution of 1.5 nm. Due to the size of the 
structures and the preparation methods of the cells the observed features 
could be an indicator for lipid rafts. This hypothesis will be discussed. 
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12:00pm  HI+2D+AS+BI+MC-ThM13  Helium Ion Microscopy 
Analysis of Ag Nanoparticle Implanted Biological Samples for MILDI-
MS (Matrix Implanted Laser Desorption/Ionization) Imaging, S. 
Shubeita, Rutgers University, L. Muller, NIDA-IRP, H.D. Lee, C. Xu, 
Rutgers University, D. Barbacci, Ionwerks Inc., K. Baldwin, NIDA-IRP, 
J.A. Schultz, Ionwerks Inc., L. Wielunski, Torgny Gustafsson, L.C. 
Feldman, Rutgers University, A.S. Woods, NIDA-IRP 
MILDI mass spectrometry is an emerging tool for detecting changes in 
brain tissue. An ~20 nm thick region of rat brain tissue implanted with 
1013/cm2 Au(400)

4+ nanoparticle (NP) ions at 40 keV, produces analytically 
useful signals of lipids, peptides and proteins using a pulsed nitrogen laser 
[1]. When a dose of 1012/cm2 500 eV AgNP (approximately 6 nm diameter) 
is implanted as a matrix, only lipids are detected [2]. To understand this it is 
essential to measure the spatial distribution of the nanoparticles. We have 
used Rutherford Backscattering and Helium Ion Microscopy imaging to 
determine the Ag NP distributions and areal densities in an implanted 
coronal rat brain section. We then correlate the ion beam analysis and 
imaging with individual lipid intensities from several hundred MILDI mass 
distributions. The results show a high degree of uniformity of the Ag atomic 
and particulate distribution on a sub-micron scale among different regions 
of the tissue. Helium Ion Microscopy provides verification of NP matrix 
uniformity, validating the use of MILDI for quantitative mass analysis.  

This work is partially supported by NSF (DMR 1126468), NIH 
(R44DA030853-03) and IAMDN. 

[1] A. Novikov et al, Analytical Chemistry 76 (2004) 7288. [2] S. N. 
Jackson et al, Analyt. and Bioanal. Chem. (e-pubed Dec 2013). 
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