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2:00pm  EN+EM+MN+NS+TR-MoA1  Optical Engineering for 
Colloidal Quantum Dot Photovoltaics, Susanna Thon, Johns Hopkins 
University INVITED 
The next generation of photovoltaics seeks to improve both efficiency and 
cost through the use of flexible platforms and new materials. Colloidal 
quantum dots (CQDs), semiconductor nanoparticles synthesized from 
solution, are a particularly attractive material for solar energy. The bandgap 
of films composed of arrays of CQDs can be tuned via the quantum 
confinement effect for tailored spectral utilization. The performance of 
CQD solar cells is currently limited by an absorption-extraction 
compromise, whereby photon absorption lengths in the near infrared regime 
exceed minority carrier diffusion lengths. I will review several photonic and 
optical engineering schemes aimed at overcoming this compromise. These 
include nanophotonic and geometric light trapping techniques, as well as 
jointly-tuned plasmonic-excitonic photovoltaics. Additionally, I will discuss 
how nanoscale engineering of CQDs and related materials can lead to 
emergent optical properties for building color-tuned optoelectronic films. 

2:40pm  EN+EM+MN+NS+TR-MoA3  Energy Transfer from 
Nanocrystal Quantum Dots to Si Nanomembranes Monitored via 
Wavelength Dependent Photocurrent Response, Weina Peng, S. Sampat, 
S. Rupich, B. Anand, H. Nguyen, D. Taylor, Y. Gartstein, Y.J. Chabal, A. 
Malko, University of Texas at Dallas 
We report the observation of wavelength dependent photocurrent in thin 
silicon nanomembranes (75 nm) coupled to colloidal CdSe/ZnS nanocrystal 
quantum dots (NQDs). The measurement was performed on back-gated, 
FET-type thin Si structures, which are functionalized with self-assembled 
monolayer (SAM) of ester termination groups to prevent surface oxidation 
and the formation of surface defect states. A thin film of nanocrystals is 
drop casted on the surface and an increase of photocurrent, up to several 
hundred nA, are recorded as a function of excitation wavelength on 
NQD/SAM/Si devices vs. plain SAM/Si structures. Quantitative analysis of 
photocurrent vs. NQD absorption spectrum allows us to ascribe the 
observed photocurrents to the photoexcited NQD excitons transferred to the 
underlying Si substrate via non-radiative and radiative energy-transfer 
mechanisms 1 . 
1H. M. Nguyen, O. Seitz, W. N. Peng, Y. N. Gartstein, Y. J. Chabal, and A. 
V. Malko, ACS Nano 6, 5574 (2012). 

3:40pm  EN+EM+MN+NS+TR-MoA6  Triboelectric Nanogenerator - A 
New Energy Technology, ZhongLin Wang, Georgia Institute of 
Technology INVITED 
Triboelectrification is an effect that is known to each and every one 
probably ever since the ancient Greek time, but it is usually taken as a 
negative effect and is avoided in many technologies. We have recently 
invented a triboelectric nanogenerator (TENG) that is used to convert 
mechanical energy into electricity by a conjunction of triboelectrification 
and electrostatic induction. As for this power generation unit, in the inner 
circuit, a potential is created by the triboelectric effect due to the charge 
transfer between two thin organic/inorganic films that exhibit opposite 
tribo-polarity; in the outer circuit, electrons are driven to flow between two 
electrodes attached on the back sides of the films in order to balance the 
potential. Ever since the first report of the TENG in January 2012, the 
output power density of TENG has been improved for five orders of 
magnitude within 12 months. The area power density reaches 500 W/m2, 
volume density reaches 490 kW/m3, and a conversion efficiency of ~50% 
has been demonstrated. The TENG can be applied to harvest all kind 
mechanical energy that is available but wasted in our daily life, such as 
human motion, walking, vibration, mechanical triggering, rotating tire, 
wind, flowing water and more. Alternatively, TENG can also be used as a 
self-powered sensor for actively detecting the static and dynamic processes 
arising from mechanical agitation using the voltage and current output 
signals of the TENG, respectively, with potential applications for touch pad 
and smart skin technologies. The TENG is possible not only for self-
powered portable electronics, but also as a new energy technology with a 
potential of contributing to the world energy in the near future.  

[1] Z.L. Wang “Triboelectric Nanogenerators as New Energy Technology 
for Self-Powered Systems and as Active Mechanical and Chemical 
Sensors”, ACS Nano 7 (2013) 9533-9557. 

[2] G. Zhu, J. Chen, T. Zhang, Q. Jing, Z. L. Wang* “ Radial-arrayed rotary 
electrification for high-performance triboelectric generator”, Nature 
Communication, 5 (2014) 3456. 

4:20pm  EN+EM+MN+NS+TR-MoA8  Conflicting Roles of Charge 
Traps in ETA Solar Cells: The CREM Point of View, Hagai Cohen, 
Weizmann Institute of Science, Israel 
The characterization of multi-interfacial devices commonly encounters 
critical difficulties due to the limited access of standard electrical probes to 
selected inner domains. In this respect, the XPS (x-ray photoelectron 
spectroscopy) based CREM (chemically resolved electrical measurements) 
[1] is a technique proposing particularly useful capabilities. Demonstration 
of internal junction fields evaluation has already been provided, as well as 
the direct measurement of layer-specific photovoltages in ETA (extremely 
thin absorber) solar cells.[2] However, the complex dynamics realized 
during charge separation in such cells has not yet been investigated 
thoroughly by CREM. 

The present work focuses on this issue, showing conflicting roles of charge 
trap states and, specifically, their different expression under controllably 
varied conditions. Comparison with complementary characterization 
techniques is further discussed, demonstrating the unique insight provided 
by CREM for their interpretation.  

References  

1. H. Cohen, Appl. Phys. Lett.85, 1271 (2004). 

2. Y. Itzhaik, G. Hodes, H. Cohen, J. Phys. Chem. Lett.2, 2872 (2011). 

4:40pm  EN+EM+MN+NS+TR-MoA9  Understanding Morphological 
and Structural Effect on Organic Photovoltaic Devices from Plasmonic 
Particles using Advanced Characterization Techniques, Nuradhika 
Herath, V. Lauter, J. Browning, Oak Ridge National Laboratory 
Organic electronics have been under intense scientific interest in recent 
years because of their attractive properties such as low cost fabrication 
processes, ability to performance under low light, and flexibility. Major 
achievements are based on use of new conjugated polymer and small 
molecules in bulk heterojunction (BHJ) devices to increase the inner donor 
acceptor interfaces of fully functional devices such as organic photovoltaics 
(OPVs) and organic light emitting devices (OLEDs). Many strategies have 
been introduced to enhance the power conversion efficiency (PCE) of 
organic electronics. Among them, one of the most promising solutions to 
enhance the absorption and device efficiencies of OPVs is incorporation of 
various metal nanoparticles (NPs). Metallic NPs enhanced the efficiency of 
the devices through local surface plasmonic responses (LSPR). This 
phenomenon reduced the recombination level of geminate excitons and 
increases the exciton dissociations, which enhanced the photocurrent and 
fill factors of devices. However, metallic NPs blended within the active 
layer can act as polaron traps detracting the device performances. In this 
study, we investigate layer and interfacial structure of small molecule (SM), 
p-DTS(FBTTh2)2 and fullerene, PC70BM system incorporated with silver 
(Ag) NPs, using neutron reflectometry (NR), X-ray reflectometry and 
Atomic Force Microscopy (AFM). We present detailed composition 
changes with Ag NPs concentrations along the film depth to understand 
morphological and dynamical effects of BHJ devices incorporated with 
plasmonic particles. To complement and enhance the findings from NR, we 
report optical properties of the samples using UV-Visible absorption and 
Photoluminescence spectroscopy. Our findings provide unique information 
and clear insights into dynamics of plasmonic organic solar cells and their 
future applications for further enhancement of PCE.  

This research was conducted at Spallation Neutron Source and at the Center 
for Nanophase Materials Sciences, which is sponsored at ORNL by the 
Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. 
Department of Energy. 

5:00pm  EN+EM+MN+NS+TR-MoA10  Doped TiO2 Based Core-Shell 
Structures for High Efficiency Hybrid Solar Cells, Jonas Weickert, J. 
Dorman, M. Noebels, M. Putnik, T. Pfadler, University of Konstanz, 
Germany, A. Wisnet, C. Scheu, LMU Munich, Germany, L. Schmidt-Mende, 
University of Konstanz, Germany 
Hybrid solar cells, with an inorganic/organic interface for charge separation, 
have been extensively investigated in the past decade in order to replace the 
expensive Si based technology with an inexpensive alternative. Typically, 
these devices incorporate a mesoporous TiO2 film which is decorated with 
dye molecules and filled with a hole transport polymer, for example P3HT, 
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to conduct the electrons and holes, respectively. Recently, we have shown 
that the efficiency of nanowire based hybrid solar cells can be increased 
from ~1.8 % to 2.5 % through the formation of a Sn-doped TiO2|TiO2 core-
shell device created via a hydrothermal growth and subsequent TiCl4 
treatment. However, this surface treatment presents difficulties in creating a 
crystalline conformal coating, limiting the control over the extent of coating 
and the crystallinity, directly affecting the charge injection from the 
polymer into the TiO2 array. In this work, we directly deposit a controllable 
TiO2 film through atomic layer deposition to conformally coat the nanowire 
arrays with various thicknesses. By changing the thickness and TiO2 
crystallinity, we are able to engineer the energy levels at the TiO2-dye-
P3HT interface due to the magnitude and position of the Fermi levels of the 
core and shell material, influencing the rate of charge injection and 
recombination. Furthermore, the crystallinity of the shell layer directly 
affects the amount of dye that can be absorbed on the surface of the 
nanostructures with a reduction in light absorption by roughly 30% from 
anatase to rutile TiO2. Finally, a detailed mechanism will be proposed for 
the device performances based on the energy level alignment between the 
pinned Fermi-level TiO2 structure and the HOMO of the P3HT resulting in 
a shifting open circuit voltage based on the crystal phases. Additionally, the 
core-shell structures are characterized with photovoltage decay and 
impedance spectroscopy measurements to study the charge transport and 
recombination across these various interfaces. 

5:20pm  EN+EM+MN+NS+TR-MoA11  Stack Numbers Dependence of 
the Activation Energies for Carrier Escape from and Recombination in 
Strain-Balanced InGaAs/GaAsP MQW, Atsuhiko Fukuyama, T. Ikari, 
K. Nishioka, T. Aihara, H. Suzuki, University of Miyazaki, Japan, H. Fujii, 
M. Sugiyama, Y. Nakano, The University of Tokyo, Japan 
Fabrication of multiple quantum well (MQWs) in an absorption layer can 
extend the absorption region toward a longer wavelength and enhance the 
short-circuit current in the solar cells. However, MQWs function as 
recombination centers, leading to degradation in both open-circuit voltage 
and fill factor. We have already reported that the increase in stack number 
of QW causes the degradation of carrier collection efficiency [1]. In this 
study, we investigate the effects of stacks number on temperature 
dependences of the photoluminescence (PL), photothermal (PPT) and the 
surface photovoltage (SPV) signals. Although the photoexcited carriers in 
the barrier should relax by the radiative recombination (PL), carriers can 
thermally escape (SPV) or non-radiatively recombine (PPT) at the same 
time. Therefore, the latter two methodologies give us new insights for the 
carrier recombination and drift through the QW. 

The present strain-balanced InGaAs/GaAsP MQWs absorption layer was 
composed of a 7.0-nm-thick In0.25Ga0.75As well and a 10.8-nm-thick 
GaAs0.66P0.34 barrier. All layers were grown on an n-type GaAs substrate 
using metal-organic vapor phase epitaxy. We prepared different samples 
with MQW stack numbers of 10, 20, 30, and 40 in the i-region. 

All PPT and SPV spectra showed three distinctive peaks followed by a step 
like function. They were decomposed into inter-subband transitions 
expressed by the two dimensional density of states for the QW and exciton 
peaks [2]. Although the PL intensity decreases with increasing the 
temperature, signals for PPT and SPV increases. We suppose two activation 
energies for the process: one is that for the carrier escape from the QW and 
another is for the non-radiative recombination in the QW. The three rate 
equations were built for PL, PPT and SPV and the temperature dependences 
are numerically fitted to estimate the two activation energies. As a result, 
we have estimated the activation energy for carrier escaping from the QW is 
constant as 70 meV for all samples with different stacks number. This is the 
same as the calculated barrier height. However, the activation energy for the 
non-radiative recombination increases from 6 to 49 meV for the sample 
with 10 and 40 stacks. This means that radiative recombination increases 
with increasing the stack number. The carriers thermally escape from the 
QW again relax into next well and may contribute to increase the radiative 
recombination. 

[1] H. Fujii et al., Jpn. J. Appl. Phys. 51, 10ND04 (2012). 

[2] M. Kondow, A. Fukuyama, and T. Ikari et al., Appl. Phys. Express 2, 
041003 (2009). 
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