
 1 Thursday Afternoon, November 13, 2014 

Spectroscopic Ellipsometry Focus Topic 
Room: 304 - Session EL+AS+EM+MC+SS-ThA 

Optical Characterization of Nanostructures and 
Metamaterials 
Moderator: David Aspnes, North Carolina State University, 
Mathias Schubert, University of Nebraska-Lincoln 

2:20pm  EL+AS+EM+MC+SS-ThA1  The Optical Properties of 
Metallic Nanostructures, Bruno Gompf, Universität Stuttgart, Germany 
 INVITED 
The entire optical response of a homogenous reciprocal sample can be 
characterized by eight basic physical properties: mean absorption, mean 
refraction, circular birefringence and circular dichroism, linear 
birefringence and linear dichroism (0°, 90°), linear birefringence and linear 
dichroism (-+45°). Always two out of the three main birefringence-
dichroism pairs (basic anisotropies) are sufficient to jump from any point of 
the Poincare-sphere to any other. A common example is the Soleil-Babinet 
compensator. This implies that always two of the basic anisotropies 
generate artificial signals of the third [1]. Therefore even for perfect crystals 
it is hard to judge, what optical property lead to an observed polarization 
change. 

In the case of inhomogeneous materials the permittivity additionally 
becomes k-dependent εij(ω, k); it exhibits spatial dispersion. For most 
artificial nanostructures, dubbed metamaterials, the building blocks are in 
the range l/10 < P < l/2. During the last couple of years it has become clear 
that in general it is not possible for these kinds of materials to define 
effective optical parameters, which are independent of the angle of 
incidence of the probing light. There optical response is intrinsically k-
dependent.  

With Mueller-matrix spectroscopic ellipsometry the entire optical response 
of artificial nanostructures can be characterized. For this the Mueller-matrix 
elements mij(θ, α, ω), which depends on the angle of incidence q, the 
azimuth orientation a and the energy, had to be measured over the complete 
angular and a wide frequency range. Visualizing the results in polar contour 
plots enables a detailed analysis of how nanostructures influence the 
polarization state of light [2-4]. Most importantly, immediate experimental 
evidence is obtained for deviations from pure dielectric behaviour; i.e. the 
optical response cannot be explained by an effective εi,j(ω) alone but 
requires spatial dispersion. 

In the talk the entire optical response of a some artificial nanostructures will 
be presented and some generalizations will be discussed, when spatial 
dispersion becomes important and how it can be distinguished from other 
optical properties leading to a mixing of polarization states, like 
birefringence and optical activity. 
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3:00pm  EL+AS+EM+MC+SS-ThA3  Mueller Matrix Ellipsometry As 
a Powerful Tool for Nanoimprinted Grating Structure Metrology, 
Xiuguo Chen, C.W. Zhang, S.Y. Liu, Huazhong University of Science and 
Technology, China 
Compared with conventional ellipsometric scatterometry, which only 
obtains two ellipsometric angles, Mueller matrix ellipsometry (MME, 
sometimes also referred to as Mueller matrix polarimetry) based 
scatterometry can provide up to 16 quantities of a 4 by 4 Mueller matrix in 
each measurement. Consequently, MME can acquire much more useful 
information about the sample and thereby can achieve better measurement 
sensitivity and accuracy. In this talk, we will demonstrate MME as a 
powerful tool for nanoimprinted grating structure metrology. We will show 
that MME-based scatterometry at least has the following three aspects of 
advantages over conventional ellispometric scatterometry. 

(1) More accurate characterization of line width, line height, sidewall angle, 
and residual layer thickness of nanoimprinted grating structures can be 
achieved by performing MME measurements in the optimal configuration. 
In contrast, conventional ellipsometric scatterometry can only be conducted 

in the planar diffraction configuration, i.e., with the plane of incidence 
perpendicular to grating lines, which is not necessarily the optimal 
measurement configuration for nanostructures in general. 

(2) Not only further improvement in the measurement accuracy and fitting 
performance can be achieved, but also the residual layer thickness variation 
over the illumination spot can be directly determined by incorporating 
depolarization effects into the interpretation of measured data. The 
depolarization effects, which are demonstrated to be mainly induced by the 
finite bandwidth and numerical aperture (NA) of the instrument, as well as 
the residual layer thickness variation of the nanoimprinted grating 
structures, can be only handled by MME. 

(3) Conventional ellipsometric scatterometry has difficulties measuring 
asymmetric grating structure due to the lack of capability of distinguishing 
the direction of profile asymmetry. In contrast, MME not only has good 
sensitivity to both the magnitude and direction of profile asymmetry, but 
also can be applied to accurately characterize asymmetric nanoimprinted 
gratings by fully exploiting the rich information hidden in the measured 
Mueller matrices. 

3:20pm  EL+AS+EM+MC+SS-ThA4  Vector Magneto-Optical 
Generalized Ellipsometry on Sculptured Thin Films with Forward 
Calculated Uniaxial Response Simulation, Chad Briley, T. Hofmann, 
University of Nebraska-Lincoln, D. Schmidt, National University of 
Singapore, E. Schubert, M. Schubert, University of Nebraska-Lincoln 
We present the vector magneto-optical generalized ellipsometric (VMOGE) 
response and forward calculated simulations of ferromagnetic slanted 
columnar thin films. Directional hysteresis magnetization scans were 
performed with an octu-pole vector magnet at room temperature on slanted 
columnar thin film samples of permalloy grown by glancing angle 
deposition passivated by an atomic layer deposited Al2O3 conformal 
coating. Model analyses of the measured Mueller matrix ellipsometric data 
through a point-by-point best match model process determines the magneto-
optical (MO) dielectric tensor. Three dimensional rendering of the anti-
symmetric off-diagonal elements of the MO dielectric tensor reveal a 
uniaxial magnetic response of the thin film along the long axis of the 
columns. The magnetic response was subsequently modelled by a best 
match model process with uniaxial hysteretic response governed by the 
shape induced anisotropy from the physical geometry and orientation of the 
nano-columns. By using model parameters for normalized saturation 
||Ms||=1, coercivity ||Hc||=50 mT, and remenance ||Mr||=0.9999*||Ms|| the 
forward calculated magnetic simulations described the observed magneto-
optical response for all measured orientations of the nano-columns with 
respect to all magnetizing field directions generated by the vector magnet. 

1) D. Schmidt, C. Briley, E. Schubert, and M. Schubert Appl. Phys. Lett. 
102, 123109 (2013) 

4:00pm  EL+AS+EM+MC+SS-ThA6  In Situ Generalized Ellipsometry 
Characterization of Silicon Nanostructures during Lithium-ion 
Intercalation, Derek Sekora, R.Y. Lai, T. Hofmann, M. Schubert, E. 
Schubert, University of Nebraska-Lincoln 
Nanostructured silicon has emerged as a leading candidate for improved 
lithium-ion battery electrode design. The combined highly accessible 
surface area and nanoscale spacing for volumetric lattice expansion of 
nanostructured thin films have shown improved cycle lifetime over bulk-
like silicon films. Additionally, ultra-thin passivation layers have been 
reported to increase the longevity and stability of silicon thin film 
electrodes. Very little in-situ information has been reported on silicon films 
during the complicated lithiation process. Furthermore, what information 
available has been limited to the study of bulk-like thin films. The 
advantageous geometry of glancing angle deposited (GLAD) thin films 
allows for the strain from lithiation to affect individual nanostructures in 
comparison to the bulk response. For this reason, alumina passivated GLAD 
silicon films were grown for use as working electrodes in half cell 
electrochemical experiments. 

The spatially coherent silicon GLAD nanostructures have intrinsic biaxial 
optical properties. Therefore, generalized ellipsometry was employed to 
investigate the silicon film's physical response to lithium intercalation 
during an electrochemical cyclic voltammagram cycled against pure lithium 
metal in a conductive anhydrous electrolyte solution. In-situ ellipsometric 
monitoring of directional optical constant changes determined by the 
homogeneous biaxial layer approach are presented. The optical response 
expresses a morphologic conversion from a highly anisotropic film to a 
pseudo-isotropic lithium concentrated form and subsequently, its return to 
the original anisotropic state. The ability to nondestructively monitor 
complex nanostructured thin films during lithium-ion processes provides 
new avenues for high storage battery electrode design. 
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4:20pm  EL+AS+EM+MC+SS-ThA7  Characterization of SiO2 
Nanoparticle Layers on a Glass Substrate by Spectroscopic Imaging 
Ellipsometry and AFM, Peter H. Thiesen, Accurion GmbH, Germany, G. 
Hearn, Accurion Inc., C. Röling, Accurion GmbH, Germany 
The well-directed organization of nanoparticles is of increasing technical 
and scientific interest. One approach is the organization of nanoparticles at 
the air/water interface for applications, like producing 2D colloidal crystals 
or nanowires. For example, Gil et al. (2007) monitored the formation of 2D 
colloidal crystals by Langmuir–Blodgett technique. They used Brewster 
angle microscopy to observe the film quality. Zang et al. (2009) have also 
studied silica nanoparticle layers at the air/water interface by multiple angle 
of incidence ellipsometry. For data interpretation, a two-layer model was 
introduced. With this model, the radius of interfacial aggregates and the 
contact angle of the nanoparticle surface at the air/water interface were 
obtained. 

In this paper d ifferent line shaped pattern of SiO2 nanoparticles were 
characterized by spectroscopic imaging ellipsometry in the wavelength 
range between 360 and 1000 nm and by AFM. The samples were provided 
by the research group of Professor Y. Mori, Doshisha University, Japan. 

The work shows the unique capability of imaging ellipsometry in 
characterizing patterned surfaces. We started with a pre inspection of the 
surface by imaging ellipsometric contrast microscopy. Tiny regions of 
interest (ROIs) were placed on interesting areas like on different steps of the 
stripes and Delta and Psi spectra were recorded. The next step in 
characterization was the mapping of Delta and Psi with pixel resolution of 
the detector. The same samples were also characterized with an AFM. The 
results optical modelling are in good agreement with the results of the 
scanning method. 

A. Gil, M. Vaupel, F. Guitiana, D. Möbius (2007) Journal of Materials 
Chemistry 17: 2434–2439. 

D. Zang, A. Stocco, D. Langevin, B. Weib, B.P. Brinks (2009) Phys. Chem. 
Chem. Phys.11: 9522–9529. 

5:00pm  EL+AS+EM+MC+SS-ThA9  Dielectric Tensor Model for Inter 
Landau-level Transitions in Highly Oriented Pyrolytic Graphite and 
Epitaxial Graphene – Symmetry Properties, Energy Conservation and 
Plasma Coupling, Philipp Kühne, Linköping University, Sweden, T. 
Hofmann, M. Schubert, University of Nebraska-Lincoln, C.M. Herzinger, 
J.A. Woollam Co., Inc., V. Darakchieva, Linköping University, Sweden 
We report on polarization sensitive, magneto-optic, reflection-type Landau 
level (LL) spectroscopy at low temperatures by using the integrated optical 
Hall effect instrument1 in the mid-infrared spectral range (600 – 4000 cm−1) 
on highly oriented pyrolytic graphite (HOPG) and epitaxial graphene grown 
on C-face silicon carbide by thermal decomposition. In both sample systems 
we observe a multitude of inter-LL transitions. Inter-LL transitions in 
HOPG possess polarization mode mixing polarization selection rules 
characteristics, while polarization mode conserving and polarization mode 
mixing inter-LL transitions are observed in epitaxial graphene which can be 
assigned to single- and Bernal stacked (ABA) multi-layer graphene, 
respectively.2 We present a new dielectric tensor model for inter-LL 
transitions which explains all experimentally observed line-shapes. For 
inter-LL transitions in multi-layer graphene and HOPG we employ this new 
model together with energy conservation considerations, to show that these 
polarization mode mixing inter-LL transitions couple with a free charge 
carrier plasma. Finally, inter-LL transition energy parameters are 
determined and discussed. 
1) P. Kühne, et. al., Rev. Sci. Instrum., accepted (2014) 
2) P. Kühne, et. al., Phys. Rev. Lett. 111, 077402 (2013) 

5:20pm  EL+AS+EM+MC+SS-ThA10  Characterization of Exfoliated 
2D Nano Materials with Imaging Spectroscopic Ellipsometry, P.H. 
Thiesen, Accurion GmbH, Germany, Greg Hearn, Accurion Inc., B. Miller, 
Technische Universität München, Germany, C. Röling, Accurion GmbH, 
Germany, U. Wurstbauer, Columbia University, E. Parzinger, A.W. 
Holleitner, U. Wurstbauer, Technische Universität München, Germany 
In the initial period of graphene research, the issue was to identify and 
characterize crystallites of microscopic scale. Imaging ellipsometry is a 
nondestructive optical method in thin film metrology with a lateral 
resolution down to 1 µm. In a number of papers, Imaging ellipsometry has 
been applied to characterize graphene flakes of few micrometer size. 
Ellipsometric contrast micrographs, delta and Psi maps as well as 
wavelength spectra [1],[2] and single layer steps in multilayer 
graphene/graphite stacks [3] have been reported.  

Molybdenum disulfide is a layered transition metal dichalcogenide. From 
the point of current research, 2D-nano materials based on MoS2 are very 
promising because of the special semiconducting properties. The bulk 
material has an indirect 1.2 eV electronic bandgap, but single layer MoS2 
has a direct 1.8 eV bandgap. The monolayer can be used in prospective 

electronic devices like transistors (MOSFETs) or photo detectors. Delta and 
Psi Spectra of MoS2 monolayers as well as maps of the ellipsometric angles 
will be presented. The practical aspect of single layer identification will be 
addressed and the capability of ellipsometric contrast micrographs as a fast 
tool for single layer identification will be demonstrated.  

An additional focus will be on the modelling of the optical properties of 2D 
nanomaterials.  

[1] Wurstbauer et al., Appl. Phys. Lett. 97, 231901 (2010)  

[2] Matkovic et al. J. Appl. Phys. 112, 123523 (2012) 

[3] Albrektsen O. J. OF Appl. Phys. 111, 064305 (2012) 
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