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8:40am  BI+AS-MoM2  Deposition of Porous Polyparylene Layers with 
Even Thickness in Narrow Tubes, Gerhard Franz, H. Heidari, Munich 
University of Applied Sciences, Germany 
To coat a thin hollow tube with an equally thick layer along the whole 
length, is one of the most challenging issues of surface refinement. Even for 
long mean free paths and large diffusion lengths, a drop in thickness is 
common, which is simply caused by the abstraction of deposited molecules, 
which cannot walk randomly any longer. To overcome these inherent 
spatial inhomogeneities, we made use of the mechanism of the temperature-
dependent surface polymerization, which is manifested in the occurence of 
a "ceiling temperature". Negatively turned, no deposition is possible beyond 
this temperature. Positively spoken, the spatially inhomogeneous deposition 
rate along a tube can be equalized with a counteracting temperature 
gradient. Experimentally, a configuration with four furnaces in line has 
been constructed which allows the inner wall of a tube 12" in length and 
1/8" in inner diameter to be coated with a layer of even thickness. The most 
prominent application is the partial protection of thin silver layers which are 
deposited on the inner walls of catheters of polyurethane or polysilicone not 
as a contiguous film but with a zebra-stripe design applying a patent-
pending procedure [1]. These silver rings act as antibacterial means to 
combat infections and induced incrustations in the urological area. To 
prolong the lifetime of the silver depot, it has to be protected with a porous 
human compatible top layer. We chose FDA approved polyparylene with 
thicknesses between 100 and 400 nm to ensure a long-term antibacterial 
activity, which should be kept above threshold level by a safety factor of 2 
[2,3]. First results for the CVD of polyparylene are presented and are 
discussed and modeled with COMSOL in terms of diffusion laws with an 
abstraction reaction of 1st order. After having shown the antibacterial effect 
for a static case [4], here a dynamic trial is presented to simulate the 
antibacterial activity during flow of bacteria-containing urine in the ureters. 
[1] G. Franz, F. Schamberger, A. Kutschera, S. Seyedi, D. Jocham, German 
patent disclosure DE 102012023349.3, Nov. 29, 2012, [2] F. Schamberger, 
A. Ziegler, and G. Franz, J. Vac. Sci. Technol. B30, 01801 (2012) [3] G. 
Franz, F. Schamberger, J. Vac. Sci. Technol. A31, 061602 (2013) [4] H. 
Heidari, St. Sudhop, F. Schamberger, G. Franz, Biointerphases, accepted 
May 05, 2014 

9:00am  BI+AS-MoM3  Deciphering the Scaling of Single Molecule 
Acid-Amine Interactions using Jarzynski's Equality, S. Raman, T. Utzig, 
T. Baimpos, B.R. Shrestha, Markus Valtiner, Max Planck Institut fur 
Eisenforschung GmbH, Germany 
Unraveling the complexities of the macroscopic world based on molecular 
level details relies on understanding the scaling of single molecular 
interactions towards integral interactions, which are mediated through a 
large number of simultaneously interacting molecular bonds. Here we 
demonstrate how to decipher the scaling of acid-amine interactions from the 
single molecular level towards the macroscopic level through a synergistic 
experimental approach combining equilibrium Surface Forces Apparatus 
(SFA) experiments and non-equilibrium single molecule force spectroscopy 
(SM-AFM). Combining these two techniques is ideally suited for testing the 
largely praised Jarzynski’s equality (JE), which relates the work performed 
under non-equilibrium conditions with the equilibrium free energy. Large-
scale equilibrium force measurements using SFA scale linearly with the 
number density of acid-base bonds at an interface and we measure 
molecular acid-amine interaction energies of 10.9 ± 0.2 kT. AFM single 
molecule experiments reveal two distinct regimes. As expected, far from 
equilibrium the measured single molecule unbinding forces increase 
exponentially with the loading rate. A second quasi-equilibrium regime at 
loading rates close to and below the natural binding/unbinding rate of the 
acid-amine bond shows little loading rate dependence. Irrespective of how 
far from equilibrium AFM experiments are performed, the energy 
calculated using JE converges rapidly to 10.7 ± 1.1 kT. This is essentially 
equivalent to the value measured by the equilibrium measurements using 
SFA. Our results suggest that using Jarzynski’s equality allows direct 
scaling of non-equilibrium single molecule interaction force measurements 
to scenarios where a large number of molecules are simultaneously 
interacting, giving rise to macroscopic equilibrated interaction energies. 
Taken together, the developed approach provides a strategy for molecular 
design of novel functional materials through predicting of large-scale 

properties such as adhesion or cell-substrate interactions based on single 
molecule or simulation experiments. 

9:20am  BI+AS-MoM4  Fabrication of ssDNA Monolayers, Custom 
Designed ssDNA Arrays and Brush Patterns in Biorepulsive Templates 
by Promoted Exchange Reaction, M.N. Khan, University of Heidelberg, 
Germany, V. Tjong, A. Chilkoti, Duke University, Michael Zharnikov, 
University of Heidelberg, Germany 
We present here a versatile approach to prepare mixed monolayers of 
thiolate-bound single stranded DNA (ssDNA) and oligo(ethylene glycol) 
substituted alkanethiols (OEG-AT) in a broad range of compositions as well 
as ssDNA/OEG-AT patterns of desired shape embedded into a biorepulsive 
background. The procedure involves two steps. First, a OEG-AT monolayer 
on a solid support is exposed to electrons or UV light in either 
homogeneous or lithographic fashion. Second, the promoted (by the 
irradiation in the first step) exchange reaction between the damaged OEG-
AT species in the film and ssDNA substituents in solution occurs, resulting 
in formation of a ssDNA/OEG-AT monolayer or pattern. The composition 
of the mixed films or ssDNA/OEG-AT spots (lithography) can be precisely 
adjusted by electron or UV dose in almost entire composition range. The 
above procedure relies on commercially available compounds and is 
applicable to both thiol-terminated and symmetric and asymmetric 
disulfide-terminated ssDNA. The fabricated OEG-AT/ssDNA templates and 
patterns can be extended into the z-dimension by surface-initiated 
enzymatic polymerization of ssDNA, which results in the formation of 
highly ordered ssDNA brushes and allows topographically complex ssDNA 
brush patterns to be sculpted on the surface. 

9:40am  BI+AS-MoM5  High Throughput BioMaterials Screening using 
Microarrays and High Information Content Imaging Methods, S. 
Boudjabi, D. Covelli, M. Keramane, E. Luckham, John Brennan, 
McMaster University, Canada INVITED 
This presentation will highlight recent work in the area of high throughput 
screening of biologically modified surfaces for production of biosensors, 
protein and cell microarrays, and non-fouling surfaces. Using robotic 
material synthesis and assay systems and a combination of contact and 
noncontact microarray printing, we have produced several libraries of 
biomaterials with a wide range of chemical compositions based on acrylate, 
silicone and silica-based polymers. Using silica-based materials as an 
example, the presentation will show the workflow utilized to develop new 
bioactive polymer materials for generation of bioactive and stealth materials 
and coatings. This includes methods to produce several thousand materials 
very rapidly via printing, rapid imaging tools and assays for screening to 
identify "hits" that show a desired property (i.e., high bioactivity, low non-
specific binding), and methods for detailed material analysis using a range 
of imaging methods based on fluorescence, XPS, MALDI-MS/MS, FTIR 
and SPR to fully characterize the properties of biologically active materials. 
Methods for mining and analyzing the large datasets produced using our in-
house developed Biointerfaces Research Gateway will be described. 

10:40am  BI+AS-MoM8  Osteocalcin Adsorption onto Calcium 
Phosphate and Silica Surfaces, L.A. Scudeller, David Castner, University 
of Washington 
Osteocalcin (OC) is the most abundant, non-collagenous protein in bone 
and accounts for almost 2% of total protein in the human body. OC plays a 
role in the body's metabolic regulation and bone building, as well as being 
used as a biochemical marker for bone formation. However, its precise 
function is not known. OC is known to bind strongly to hydroxyapatite 
(HAP). This strong binding is likely the result of the γ-carboxylated 
glutamic acid residues (Gla) in OC interacting with Ca2+ ions on the HAP 
surface. OC has three helical units (α-1, α-2 and α-3) and the spacing of the 
3 Gla residues in the α-1 unit match well the lattice spacing of the (001) 
HAP surface.  

This study uses x-ray photoelectron spectroscopy (XPS) and time-of-flight 
secondary ion mass spectrometry (ToF-SIMS) to investigate the adsorption 
of OC and decarboxylated (i.e., Gla converted back to Glu) OC (dOC) onto 
various calcium phosphate surfaces as well as silica surfaces. The XPS 
nitrogen signal is used to track the amount of adsorbed OC and dOC. The 
intensities of key ToF-SIMS amino acid fragments are used to assess 
changes in the structure of adsorbed OC and dOC. 

The largest differences were observed between OC and dOC adsorbed onto 
the silica and HAP surfaces. Similar amounts (3-4 atomic % N) of OC and 
dOC were adsorbed onto the silica surface. Higher amounts adsorbed on the 
HAP surface (~5 atomic % N for dOC and ~8 atomic % N for OC). The 
ToF-SIMS data showed the intensity of the Cys amino acid fragment, 
normalized to intensity of all amino acid fragments, was significantly higher 
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(~x10) when the proteins were adsorbed onto silica. Since in the native OC 
structure the cysteines are buried in the center of the 3 α-helices, this 
indicates both OC and dOC are more denatured on the silica surface. As OC 
and dOC denature upon adsorption to the silica surface the cysteines 
become more exposed and are more readily detected by ToF-SIMS. No 
significant differences were detected between OC and dOC adsorbed onto 
the silica surface, but small differences were observed between OC and 
dOC adsorbed onto the HAP surface. In the OC structure the α-3 helix is 
located above the α-1 and α-2 helices. Small differences in the ToF-SIMS 
intensities from amino acid fragments characteristic of each helical unit 
(Asn for α-1; His for α-2; and Phe for α-3) suggests either slight changes in 
the orientation or a slight uncovering of the α-1 and α-2 for adsorbed dOC. 

XPS showed similar amounts of OC and dOC were absorbed onto 
amorphous HAP, crystalline HAP and octacalcium phosphate, but ToF-
SIMS detected some small differences in the amino acid fragment 
intensities between adsorbed OC and dOC. 

11:00am  BI+AS-MoM9  Reversible Activation of a pH-sensitive Cell 
Penetrating Peptides Attached to Gold Surfaces, Joe Baio, Oregon State 
University, D. Schach, University of Chicago, M. Bonn, T. Weidner, Max 
Planck Institute for Polymer Research, Germany 
GALA peptides (WEAALAEALAEALAEHLAEALAEALEALAA) mimic 
pH-sensitive viral fusion proteins and are widely touted as a promising 
route to achieve site-specific delivery of therapeutic compounds. At basic 
pH, GALA assumes a random coil structure but when lowering the pH to 
acidic conditions the peptide transitions into an alpha helical structure. In 
this state, GALA has the ability to penetrate cell membranes and form 
pores. This mechanism is mainly driven by the change in overall charge of 
the glutamic acid side chains. One development of GALA mediated drug 
delivery is the immobilization of these peptides onto Au nanoparticles. Here 
we demonstrate, using a variety of spectroscopic techniques, that GALA 
can self-assemble into a protein monolayer on a gold film, linked to the 
surface via a single cysteine synthesized to the carbonyl terminus. 
Transmission IR vibrational spectroscopy demonstrates that the addition of 
this cysteine does not impede the pH transition between a helix and random 
coil structure in solution. Detailed characterization of the thiol-Au 
immobilization scheme by X-ray photoelectron spectroscopy illustrates that 
this single cysteine induced the formation of a well-ordered protein 
monolayer. To directly observe any pH triggered transition of this protein 
monolayer, sum frequency generation (SFG) vibrational spectra, at the 
amide I vibrational band, were collected at four different pH environments. 
A vibration mode at 1655 cm-1, related to a helical structure, appears when 
this monolayer is immersed in a buffer at acidic conditions (pH 3 and 5) and 
then disappears under basic conditions (pH 9 and 12). While the surface 
immobilization clearly reduces the effective glutamic acid pKa from a bulk 
solution value of 6 to 5.5, the covalently bound GALA-cysteine monolayer 
reliably retained the reversible, pH-driven helix-coil transition mechanism. 
Our findings establish that covalent attachment of GALA via cysteine 
linkers is a promising route for drug delivery applications and the design of 
‘smart’ biological coatings. 

11:20am  BI+AS-MoM10  Polydopamine Modification Using Small 
Molecule Thiols and Dithiols: Problems and Solutions for Creating 
Protein Resistant Coatings, Marlon Walker, A. Vaish, D. Vanderah, 
National Institute of Standards and Technology (NIST) 
Polydopamine (PDA) is emerging as an increasingly useful bio-inspired 
coating for surface modification. Generated by a condensation reaction of 
dopamine in aqueous media under alkaline conditions, it can be readily 
deposited on almost any surface, forming thin films of controllable 
thicknesses. One useful attribute of a PDA coating is that it can be placed 
on and further modified to exhibit desired properties not possible with the 
underlying substrate. We present results of functionalizing PDA-coated 
surfaces on substrates such as silicon with oligo (ethylene oxide) thiols and 
dithiols for non-specific protein adsorption resistance. 

11:40am  BI+AS-MoM11  A Process to Functionalize Polyaniline for 
Biotin-Avidin Biosensing, Tiana Shaw, M.D. Williams, Clark Atlanta 
University 
Biotin-avidin technology is a widely explored interaction in bioscience. 
Biotin’s affinity for the protein avidin, makes it ideal for protein and nucleic 
acid detection or purification methods. This strong interaction if often used 
in pretargeting strategies for cancer treatment. In most cases a probe 
molecule (antibody) is connected to a marker molecule (fluorophore or 
nanoparticle) through the biotin-avidin bridge. Biotinylated nanoparticles 
can play a role in improving this interaction and creating an electronic or 
optical detection method. Polyaniline is a polymer which can be easily 
functionalized to be specific for various biomolecules and has ideal sensor 
characteristics. In this study we will design a process to functionalize 
polyaniline with biotin to create a biotin-avidin biosensor. We began with 

2-acetamidophenol which is a hydroxyl substituted aniline monomer. This 
monomer undergoes polymerization to yield 2-hydroxy polyaniline. The 
polymer’s hydroxyl group was functionalized by Steglich esterification 
which refluxes a carboxylic acid with an alcohol. This esterification drives 
the reaction and dehydrates the products shifting the equilibrium towards 
the product. In this reaction DCC (dicyclohexylcarbodiimide) activates the 
carboxylic acid of biotin to further reaction and DMAP (4-
dimethlyaminopyridine) acts as the acyl transfer catalyst. The biotinylated 
polyaniline derivative was characterized using FT-IR spectroscopy, 1H 
NMR spectroscopy, UV-VIS spectroscopy, and Scanning Electron 
Microscopy. Florescence emission studies were also carried out with the 
avidin protein. 
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