Friday Morning, November 14, 2014

Atom Probe Tomography Focus Topic Room: 301 - Session AP+AS+NS+SS-FrM

Correlative Surface and Interface Analysis with APT

Moderator: Arun Devaraj, Pacific Northwest National Laboratory

8:20am AP+AS+NS+SS-FrM1 Correlative Transmission Electron Microscopy and Atom Probe Tomography of Interfaces in CdTe, David Diercks, J.J. Li, C.A. Wolden, B.P. Gorman, Colorado School of Mines INVITED

CdTe solar cells are a promising thin film technology, yet the highest reported efficiencies [1] remain well below the theoretical efficiency for such materials. For polycrystalline CdTe, interface contacts and grain boundaries along with impurities likely account for the majority of this underperformance.

Atomic scale analysis is an important feedback mechanism to relate the structure to both the device performance and the processing conditions. Through this, the atomic scale factors which improve or limit the performance can be ascertained. This then enables the development of materials and processing methods which best eliminate or mitigate the detrimental effects.

With these goals, atom probe tomography (APT) in conjunction with transmission electron microscopy (TEM) was used to study the contact interfaces and grain boundaries in CdTe devices. With the combination of time-of-flight mass spectrometry and point projection microscopy by controlled field evaporation, APT has the ability to obtain tens of ppm composition sensitivity along with near atomic-level spatial resolution. TEM provides crystallographic information along with other correlative information for guiding the reconstruction of the APT data.

It is demonstrated that the compositions measured for CdTe by APT are sensitive to the analysis conditions. Therefore, the APT analysis conditions for obtaining accurate measurements of the specimen stoichiometry were first ascertained. Following that, TEM and APT analyses of thin film devices consisting of a fluorine-doped tin oxide coated glass substrate subsequently coated with CdS, CdTe, Cu-doped ZnTe, and Au were performed. Using optimized values, APT analyses on the absorber layers and contact interfaces after different deposition and processing conditions were performed. These show significant changes in copper and sodium distributions as a result of the thermal processing.

[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 42)," *Progress in Photovoltaics*, vol. 21, pp. 827-837, Aug 2013.

9:00am AP+AS+NS+SS-FrM3 Atom Probe Compositional Analysis of Nanoscale Precipitates in Nb-Ti Micro-alloyed Steels, *Monica Kapoor*, *G.B. Thompson*, University of Alabama, *R.M. O'Malley*, Nucor Steel

Composition of complex carbide and carbo-nitride precipitates in Ti-Nb micro-alloyed 80-ksi (0.06 wt. % Nb; 0.06 wt. % Ti) and 100-ksi (0.03 wt. % Nb; 0.12 wt. % Ti) steels was studied using atom probe tomography. Fine (~2 nm) and coarse (~8 nm) NbTiC precipitates were identified in the 100 ksi steel with the Fe content decreasing with increasing precipitate size. Both steels had coarse NbTiCN precipitates (~ 80 nm) having ~7 at. % and ~30 at. % Nb in the precipitates for the 100 ksi and 80 ksi steels respectively. Star-shaped TiC precipitates and parallel rows of interphase NbTiC clusters on and near grain boundaries were also identified in the 100 ksi steel. In the 80 ksi steels, uniformly distributed disk-shaped and spherical NbTiC clusters were observed along dislocations. The composition and phase stability of these precipitates are discussed in terms of Thermo-Calc solution thermodynamic modeling.

9:20am AP+AS+NS+SS-FrM4 Nanoscale Imaging of Li and B in Glass Samples, a Comparison of ToF-SIMS, NanoSIMS, and APT, Zihua Zhu, Z.Y. Wang, J. Liu, J. Crum, J.V. Ryan, D.K. Schreiber, J.J. Neeway, Pacific Northwest National Laboratory

A widely used method to immobilize nuclear wastes is fusing them into glasses. These proposed glass waste forms are multicomponent complex material with the common components of Li and B compounds. It is difficult for commonly-used surface analysis tools (e.g., X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, scanning electron microscope/energy dispersive spectroscopy (SEM/EDX), and transmission electron microscope/energy dispersive spectroscopy (TEM/EDX)) to image the distributions of ultra-light elements like Li and B with sub-micron lateral resolutions. Time-of-flight secondary ion mass

spectrometry (ToF-SIMS), NanoSIMS, and atom probe topography (APT) were used to image Li and B distributions in several representative glass samples. ToF-SIMS can provide ~100 nm lateral resolutions if using Li+ and BO2⁻ images. However, both positive ion mode and negative ion mode are needed because neither B signals in positive ion mode nor Li signals in negative ion mode can provide adequate intensity to form qualified images. NanoSIMS can provide ~100 nm lateral resolutions if using Li and BO2 images, while the lateral resolution of positive ion mode of NanoSIMS is poor (~400 nm). APT can provide ~2 nm lateral resolution for Li⁺ and B⁺ in a 3-D mode and quantification of APT is better than that of SIMS. While APT can provide much better ultimate lateral resolution than ToF-SIMS and NanoSIMS, it has three drawbacks: limited field-of-view, timeconsuming sample preparation, and frequent/unpredicted sample damage during measurement. As a comparison, field-of-view of SIMS is flexible, sample preparation is simple, and little unpredicted sample damage occurs during SIMS measurement. Therefore, SIMS and APT can be regarded as complimentary techniques in nanoscale imaging of Li and B in glass samples.

9:40am AP+AS+NS+SS-FrM5 Application of (S)TEM and Related Techniques to Atom Probe Specimens, *William Lefebvre*, *D. Hernandez-Maldonado*, *F. Cuvilly*, *F. Moyon*, University of Rouen, France INVITED The geometry of atom probe tomography (APT) specimens strongly differs from standard scanning transmission electron microscopy (STEM) foils. Whereas the later are rather flat and thin, APT tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by STEM and APT, it is mandatory to explore the limits and advantages imposed by the particular geometry of APT specimens to STEM.

High angle annular dark field (HAADF) in STEM provides a contrast related to atomic number and to the amount of atoms in a column. A complete analysis of a high resolution HAADF STEM image requires the identification of projected column positions, the calculation of integrated HAADF intensity for each column and, eventually, the estimation of a "background level" generated by the amorphous carbon or oxide layer present on the specimen surface. Then, by of a statistical analysis [1], the possibility of atomic counting in an APT specimen can be explored. For this purpose, we propose an image processing method which provides a complete analysis of HAADF STEM images, that was applied here to APT specimens. In order to estimate the advantages and limitations of the method for such a particular specimental results. Illustrations will be given for specimens before and after field evaporation in APT.

[1] S. Van Aert et al. Phys. Rev. B 87 (2013) 064107

10:40am AP+AS+NS+SS-FrM8 APT Analysis of Biological Materials, Daniel Perea, J. Liu, J.A. Bartrand, N.D. Browning, J.E. Evans, Pacific Northwest National Laboratory INVITED Biointerfaces play an essential role for the function of many biological materials and organisms. The behaviors of complex macromolecular systems at materials interfaces are important in the fields of biology, environmental biology, biotechnology, and medicine. An understanding of the chemical processes and physics, and ultimate the ability to engineer biomaterials and microorganisms with specific properties and functions, is aided by an atomic level understanding of the composition and morphology of biointerfaces. However, a great challenge exists to map the atomic level composition and morphology of biointerfaces using APT, precluding a complete understanding of the structure properties relationship. At the Environmental Molecular Sciences Laboratory (EMSL), the application of APT is being developed in combination with other microscopy and spectroscopic techniques to study interfaces in biologic materials. We are developing methodologies and analyses that are allowing us to probe the ultimate limits of what APT analysis can confidently provide despite the complex thermally-assisted field evaporation behavior of soft materials. Advanced sample preparation techniques will also be discussed that further advance the application of APT into field of biology.

Authors Index

Bold page numbers indicate the presenter

— B —

Bartrand, J.A.: AP+AS+NS+SS-FrM8, 1 Browning, N.D.: AP+AS+NS+SS-FrM8, 1

— C —

Crum, J.: AP+AS+NS+SS-FrM4, 1 Cuvilly, F.: AP+AS+NS+SS-FrM5, 1

- D Diercks, D.R.: AP+AS+NS+SS-FrM1, 1
- E —

Evans, J.E.: AP+AS+NS+SS-FrM8, 1

Gorman, B.P.: AP+AS+NS+SS-FrM1, 1

— H —

Hernandez-Maldonado, D.: AP+AS+NS+SS-FrM5, 1 — **K** — Kapoor, M.: AP+AS+NS+SS-FrM3, **1** — **L** — Lefebvre, W.: AP+AS+NS+SS-FrM5, **1** Li, J.J.: AP+AS+NS+SS-FrM1, **1**

Liu, J.: AP+AS+NS+SS-FrM4, 1; AP+AS+NS+SS-FrM8, 1 — M —

Moyon, F.: AP+AS+NS+SS-FrM5, 1

Neeway, J.J.: AP+AS+NS+SS-FrM4, 1

O'Malley, R.M.: AP+AS+NS+SS-FrM3, 1

Perea, D.E.: AP+AS+NS+SS-FrM8, 1

— R —

Ryan, J.V.: AP+AS+NS+SS-FrM4, 1 — **S** — Schreiber, D.K.: AP+AS+NS+SS-FrM4, 1 — **T** —

Thompson, G.B.: AP+AS+NS+SS-FrM3, 1

Wang, Z.Y.: AP+AS+NS+SS-FrM4, 1 Wolden, C.A.: AP+AS+NS+SS-FrM1, 1

— Z — Zhu, Z.: AP+AS+NS+SS-FrM4, **1**