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8:00am  2D+EM+NS+SS+TF-WeM1  Silicene and Germanene: Novel 
Graphene-like Artificial Silicon and Germanium Allotropes, Guy Le 
Lay, Aix-Marseille University, France INVITED 
Silicene, graphene's cousin, and germanene, a new born in Terra Plana, are 
predicted to combine the unique electronic properties of graphene 
associated to quasiparticles behaving as massless Dirac fermions to a 
character of two-dimensional topological insulators, and, even, possibly, 
high temperature superconductors. In this talk, I will present fundamental 
results on these novel synthetic 2D materials, which do not exist in nature, 
but which might open the way to practical applications, because of their 
expected direct compatibility with the current nano/micro electronic 
technologies. 

8:40am  2D+EM+NS+SS+TF-WeM3  Silicon Growth at the Two-
Dimensional Limit on Ag(111), Andrew Mannix, B.T. Kiraly, 
Northwestern University, B.L. Fisher, Argonne National Laboratory, M.C. 
Hersam, Northwestern University, N.P. Guisinger, Argonne National 
Laboratory 
Bulk silicon has played a dominant role in the growth of microelectronics 
over the past 50 years. Considering the immense interest in two-
dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.), the 
growth of Si in the 2D limit is of high relevance to the evolution of 
electronic materials. Utilizing atomic-scale, ultra-high vacuum (UHV) 
scanning tunneling microscopy (STM), we have investigated the 2D limits 
of Si growth on Ag(111). In agreement with previous reports of sp2-bonded 
silicene,1,2 we observe the evolution of ordered 2D phases, which we 
attribute to apparent Ag-Si surface alloys. At sufficiently high Si coverage, 
we observe the precipitation of crystalline, sp3-bonded Si(111) domains. 
These domains are capped with a √3 honeycomb phase that is 
indistinguishable from the √3 honeycomb-chained-trimer (HCT) 
reconstruction of Ag on Si(111).3,4,5 Additional evidence suggests that 
silicon intermixing with the Ag(111) substrate is followed by the 
precipitation of crystalline, sp3-bonded silicon nanosheets. These 
conclusions are supported by ex-situ atomic force microscopy (AFM), 
Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Even at 
the 2D limit, scanning tunneling spectroscopy shows that the sp3-bonded 
silicon nanosheets exhibit semiconducting electronic characteristics. 

[1] Vogt, P., et al. Silicene: Compelling Experimental Evidence for 
Graphene-like Two-Dimensional Silicon. Phys. Rev. Lett., 108(15), 155501 
(2012). 

[2] Feng, B., et al. Evidence of silicene in honeycomb structures of silicon 
on Ag(111). Nano Lett., 12(7), 3507–11 (2012) 

[3] Le Lay, G. Physics and electronics of the noble-metal/elemental-
semiconductor interface formation: A status report. Surf. Sci., 132(1-3), 
169–204 (1983). 

[4] Aizawa, H., Tsukada, M., Sato, N., & Hasegawa, S. Asymmetric 
structure of the Si (111)- √ 3×√ 3-Ag surface. Surf. Sci., 429 (0–5) (1999). 

[5] Ding, Y., Chan, C., & Ho, K. Structure of the (√ 3×√ 3) R30° Ag/Si 
(111) surface from first-principles calculations. Phys. Rev. Lett., 67(11), 
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9:00am  2D+EM+NS+SS+TF-WeM4  Growth, Structure, and 
Properties of 2D SiO2 Polymorphs, Eric Altman, J. Götzen, X. Zhu, A. 
Sonnenfeld, U.D. Schwarz, Yale University 
Recently it has been shown that SiO2 can form closed 2D bilayers; because 
the layers have no dangling bonds they are expected to interact solely 
through van der Waals interactions. Despite the expected weak interactions, 
hexagonal crystalline bilayers on Pd(100) are stretched 4% to match the 
lattice constant of the substrate. Both electron diffraction and STM reveal 
that the size of the crystalline domains is limited along Pd[011] and one of 
the other bilayer close-packed directions but was long along the third one. 
The formation of regular domain boundaries on the square Pd substrate is 
attributed to stress relief in the crystalline layer. Ab initio calculations 
indicate that much of the remaining strain energy can be relieved by 
allowing the film to relax along the incommensurate direction. In this way 
the square substrate actually aids the templating of the overlayer despite the 
severe geometric mismatch. The calculations also indicate that the bilayer is 
surprisingly compliant, explaining the lattice matching despite the weak 

interaction and poor match. Amorphous bilayers could also be prepared on 
Pd(100). Atomic-scale features in STM images of the amorphous film could 
be associated with 4-9 membered rings of corner-sharing SiO4 tetrahedra. In 
addition to the structural heterogeneity, spectroscopic STM imaging 
revealed electronic heterogeneity with oxygen sites joining larger rings of 
corner-sharing SiO4 tetrahedra fading at low bias; spectra revealed two 
distinct electronic states responsible for this phenomenon. MBE growth of 
silica bilayers on graphene layers grown on epitaxial Ru on sapphire will 
also be discussed. 

9:20am  2D+EM+NS+SS+TF-WeM5  Layer-dependent Electronic and 
Vibrational Properties of SnSe2 and SnS2 2D Materials, Joseph 
Gonzales, R. Schlaf, I.I. Oleynik, University of South Florida 
Layered metal chalcogenides possess a wide range of unique electronic 
properties, which are currently explored for applications as novel two-
dimensional electronic materials. SnS2 and SnSe2 layered materials consist 
of covalently bonded S-Sn-S (Se-Sn-Se) sheets bonded together by weak 
van der Waals interactions. The atomic, electronic and vibrational 
properties of SnS2 and SnSe2 thin films are investigated using first-
principles density functional theory (DFT). The accurate prediction of 
electronic and optical properties of SnS2 and SnSe2 layered 2D materials is 
achieved by applying state of the art many-body perturbation theory in GW 
approximation followed by solving the Bethe-Salpeter equation (BSE) to 
take into account excitonic effects. The evolution of the thickness-
dependent band structure, optical and Raman spectra are discussed. The 
strain effects due to interactions with the substrate are also considered. The 
first-principles results are compared with available experimental data. 

9:40am  2D+EM+NS+SS+TF-WeM6  Synthesis and Properties of Large 
Scale, Atomically Thin Tungsten Diselenide (WSe2), Sarah Eichfeld, 
Y.C. Lin, L. Hossain, The Pennsylvania State University, A. Piasecki, The 
Pennsyvania State University, A. Azcati, University of Texas, Dallas, S. 
McDonnell, R.M. Wallace, University of Texas at Dallas, J.A. Robinson, 
The Pennsyvania State University 
Transition metal dichalcogenides (TMDs), such as tungsten diselenide 
(WSe2) are of interest due to their intriguing properties including the 
transition from indirect gap to direct gap as the material is thinned to a 
single atomic layer. Stacking of these layered TMDs also allows for the 
possibility of bandgap tuning. These properties can suit a large range of 
flexible and low temperature electronic and optoelectronic devices. Current 
methods of WSe2 research involve exfoliation or vaporization of WO3 and 
Se powder, which limits industrial scalability. This work is focused on 
development of a metal-organic chemical vapor deposition process that can 
controllably produce highly-crystalline, atomically thin WSe2 on large area 
substrates.  

Growth of controlled monolayer tungsten diselenide (WSe2) was carried out 
using chemical vapor deposition in a cold wall vertical reactor. Tungsten 
hexacarbonyl (W(CO)6) and dimethylselenium (DMSe) served as the 
tungsten and selenium precursors, respectively. Use of MOCVD precursors 
provides a means to independently control the W and Se precursors 
allowing for more precise control of the individual species during growth. 
Process variables including temperature (500-950°C), pressure (100-700 
Torr), and carrier gas, which were correlated with grain size, growth rate, 
and nucleation density of the WSe2 to identify optimal parameters for 
atomically controlled synthesis. Increasing the growth pressure from 100-
700 Torr results in a decrease in growth rate and nucleation density, leading 
to a >50x increase in grain size. Increased growth temperatures yield an 
increase in grain size, however, it was found that above temperatures of 800 
°C the sapphire substrate begins to decompose in the growth environment, 
resulting in a degradation of WSe2 above 800°C. Synthesis using 100% 
hydrogen, and also hydrogen/nitrogen mixtures was carried out. It was 
found that 100% hydrogen was necessary in order to achieve low carbon 
incorporation in the WSe2 films. Characterization of these samples via 
Raman and photoluminescence spectroscopy verified that high quality, 
monolayer WSe2 is readily achievable. Additional characterization (i.e. 
scanning electron microscopy, atomic force microscopy, etc.) verify the 
quality, grain size, and nucleation density of the atomic layers. Finally, we 
will discuss the impact of substrate choice on the quality of the WSe2 
atomic layers, as well as providing direct evidence that synthesis on 
graphene results in highly textured films, with nearly 100% 
commensurability to the underlying graphene.  
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11:00am  2D+EM+NS+SS+TF-WeM10  Growth of Transition Metal 
Dichalcogenides and their Alloys and on Flat and Patterned Substrates, 
E. Preciado, A. Nguyen, D. Barroso, V. Klee, S. Bobek, I. Lu, S. Naghibi, G. 
Von Son Palacio, T. Empante, K. Brown, K. Yang, A. Nguyen, J. Mann, 
Ludwig Bartels, University of California - Riverside 
The use of organic chalcogen precursors permits the CVD growth of 
MoS2(1-x)Se2x alloys of any composition between pure MoS2 and MoSe2 on 
SiO2. Spatially resolved vibrational and photoluminescence (PL) 
spectroscopy is used to characterize our samples: while we observe a 
continuous transition of the PL maximum with S: Se ratio, the vibrational 
modes behave in a more complicated, 2-mode fashion. Depending on 
growth conditions, compositional homogeneous and heterogeneous films 
can be prepared.  

We present details of our growth processes and show to which extend 
patterns on the substrates can affect the resultant structures. The patterns 
range from simple hole and pillar arrays to complex waveguide structures. 
We find that holes to an underlying reducing substrate (silicon) are effective 
in seeding growth. In contrast, protrusions on the substrate have little effect, 
so that complex devices can be overgrown.  

Ref: Mann et al., 2-Dimensional Transition Metal Dichalcogenides with 
Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers, Advanced Materials 
26, 1399 (2014) 

11:20am  2D+EM+NS+SS+TF-WeM11  Synthesis, Characterization 
and Radiation Response of Boro-Carbon-Oxy-Nitride: A 
Heterogeneous 2D Material, GaneshRahul Bhimanapati, M. 
Wetherington, M. Kelly, J.A. Robinson, The Pennsylvania State University 
Since graphene, there have been many other two-dimensional materials 
systems (e.g., boron nitride (hBN), borocarbon nitride (BCN), transition-
metal dichalcogenides) that provide an even wider array of unique 
chemistries and properties to explore future applications. In fact, these other 
2D materials, are sometimes far better suited for many optoelectronic and 
mechanical applications. Specifically, tailoring graphene/boron nitride 
heterostructures, which retain the character of single-atom thick sheets that 
can withstand large physical strains, are easily functionalized, and have 
entirely different optical and mechanical properties compared to graphene 
can provide the foundation for entirely new research avenues. In recent 
years, it has been shown that because of the similar crystal structure, 
carbon, boron, and nitrogen can coexist as atomic sheets in a layered 
structure. Thus, combining these materials to form a new heterogeneous 
material system known as boro-carbon-oxy-nitride (BCON) for potential 
nano-mechanical and electronic applications and to study its fundamental 
property relations is necessary. Here, we present the fundamental property 
relations of BCON and its structural response to various radiation sources 
such as alpha, beta and gamma particles thereby providing a means for 
potential radiation sensing applications. 

We have developed a facile method of integrating boron nitride and 
graphene oxide (GO) via chemical exfoliation. Chemical exfoliation of 
graphene oxide and boron nitride powders is accomplished via oxidation in 
strong acids, as we find previous methods of sonication in polar solvents 
does not yield stable solutions of hBN .Upon exfoliation, GO and hBN are 
mixed, and the resulting BCON material can be suspended in DI water, with 
suspension stability depending on the pH of the GO. The study of the 
stability of this material at different pH conditions indicates a stable and a 
uniform solution is achievable at pH 4-7. Fourier transform infrared 
spectroscopy (FTIR) indicates the B-N-B bending in the BCON is 
decreased as an effect of parent GO. Further, radiation response of this 
material to various radiation sources such as alpha, beta and gamma 
radiation are studied using In-Situ X-Ray Photoelectron Spectroscopy 
(XPS). The structural changes of carbon 1s peak in the BCON even for very 
low doses of radiation energy indicate potential applications in radiation 
sensing. 

11:40am  2D+EM+NS+SS+TF-WeM12  The Structure of 2D Glass, 
Christin Büchner, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 
Germany, L. Lichtenstein, Lawrence Berkeley National Laboratory, M. 
Heyde, H.-J. Freund, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 
Germany INVITED 
For the first time, the structure of an amorphous network is imaged in real 
space.[1] Through a thin film approach, silica is made accessible for 
investigation with scanning tunneling microscopy (STM) and atomic force 
microscopy (AFM). Physical vapor deposition with subsequent annealing is 
employed to create an atomically flat bilayer of SiO2, supported on a 
Ru(0001) single crystal. Atomic positions of oxygen and silicon can be 
visualized, as well as ring structures with their distributions and local 
neighborhoods. All atomic species on the surface can be directly assigned 
with chemical sensitivity imaging.[2] This allows for statistical analysis of 
the building units, comparing amorphous to crystalline regions, as well as 
experiment to theory. Pair correlation functions of the 2D film structure are 

set against diffraction data of bulk silica, revealing very similar bond 
distributions. 

Coexisting crystalline and amorphous areas allow imaging of a topological 
transition region.[3] The understanding of glassy structures gained from 
these experiments is the starting point for more in-depth structural 
investigations[4], but also for investigating thin films with modified 
composition. Al-doping or Fe-doping can be employed to create 2D-
Aluminosilicates or 2D-Clays, respectively.[5] Adsorption properties of the 
film can be probed using single metal atoms which migrate through the 
film, exhibiting ring-size-selectivity.[6] 

[1] L. Lichtenstein, et al., Angew. Chem., Int. Ed. 51, 404 (2012) 

[2] L. Lichtenstein, et al., J. Phys. Chem. C 116, 20426 (2012) 

[3] L. Lichtenstein, et al., Phys. Rev. Lett. 109, 106101 (2012) 

[4] C. Büchner, et al., Z. Phys. Chem., DOI: 10.1515/zpch-2014-0438 
(2014) 

[5] J. A. Boscoboinik, et al., Angew. Chem. Int. Ed. 51, 6005 (2012) 

[6] W. E. Kaden, et al., Phys. Rev. B 89, 115436 (2014) 
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