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8:20am  2D+EM+NS+PS+SS+TF-MoM1  Exploring the Flatlands: 
Synthesis, Characterization and Engineering of Two-Dimensional 
Materials, Jun Lou, Rice University INVITED 
In this talk, we report the controlled vapor phase synthesis of MoS2 atomic 
layers and elucidate a fundamental mechanism for the nucleation, growth, 
and grain boundary formation in its crystalline monolayers. The atomic 
structure and morphology of the grains and their boundaries in the 
polycrystalline molybdenum disulfide atomic layers are examined and first-
principles calculations are applied to investigate their energy landscape. The 
electrical properties of the atomic layers are examined and the role of grain 
boundaries is evaluated. More importantly, if precise two-dimensional 
domains of graphene, h-BN and MoS2 atomic layers can be seamlessly 
stitched together, in-plane heterostructures with interesting electronic 
applications could potentially be created. Here, we show that planar 
graphene/h-BN heterostructures can be formed by growing graphene in 
lithographically-patterned h-BN atomic layers. Our approach can create 
periodic arrangements of domains with size that ranging from tens of 
nanometers to millimeters. The resulting graphene/h-BN atomic layers can 
be peeled off from their growth substrate and transferred to various 
platforms including flexible substrate. Finally, we demonstrate how self-
assembled monolayers with a variety of end termination chemistries can be 
utilized to tailor the physical properties of single-crystalline MoS2 atomic-
layers. Our data suggests that combined interface-related effects of charge 
transfer, built-in molecular polarities, varied densities of defects, and 
remote interfacial phonons strongly modify the electrical and optical 
properties of MoS2, illustrating an engineering approach for local and 
universal property modulations in two-dimensional atomic-layers.  

9:00am  2D+EM+NS+PS+SS+TF-MoM3  Influence of Substrate 
Orientation on the Growth of Graphene on Cu Single Crystals, Tyler 
Mowll, University at Albany-SUNY, Z.R. Robinson, U.S. Naval Research 
Laboratory, P. Tyagi, E.W. Ong, C.A. Ventrice, Jr., University at Albany-
SUNY 
A systematic study of graphene growth on on-axis Cu(100) and Cu(111) 
single crystals oriented within 0.1° from the surface normal and a vicinal 
Cu(111) crystal oriented 5° off-axis has been performed. Initial attempts to 
grow graphene by heating each crystal to 900°C in UHV, followed by 
backfilling the chamber with C2H4 at pressures up to 5x10-3 Torr did not 
result in graphene formation on either the on-axis Cu(100) or on-axis 
Cu(111) surfaces. For the vicinal Cu(111) surface, epitaxial graphene was 
formed under the same growth conditions. By backfilling the chamber with 
C2H4 before heating to the growth temperature, epitaxial graphene was 
formed on both the on-axis Cu(100) and off-axis Cu(111) surfaces, but not 
the on-axis Cu(111) surface. By using an argon overpressure, epitaxial 
overlayers could be achieved on all three Cu substrates. These results 
indicate that the most catalytically active sites for the dissociation of 
ethylene are the step edges, followed by the Cu(100) terraces sites and the 
Cu(111) terrace sites. The need for an argon overpressure to form graphene 
the on-axis Cu(111) surface indicates that the Cu sublimation rate is higher 
than the graphene growth rate for this surface. This research was supported 
in part by the NSF (DMR-1006411).  

9:20am  2D+EM+NS+PS+SS+TF-MoM4  Synthesis of Large Scale 
MoS2-Graphene Heterostructures, Kathleen McCreary, A.T. Hanbicki, J. 
Robinson, B.T. Jonker, Naval Research Laboratory 
A rapidly progressing field involves the stacking of multiple two-
dimensional materials to form heterostructures. These heterosctructures 
have exhibited unique and interesting properties. For the most part, 
heterostructure devices are produced via mechanical exfoliation requiring 
the careful aligning and stacking of the individual 2D layered components. 
This tedious and time consuming process typically limits lateral dimensions 
to micron-scale devices. Chemical vapor deposition (CVD) has proven to be 
a useful tool in the production of graphene and has very recently been 
investigated as a means for the growth of other 2D materials such as MoS2, 
MoSe2, WS2, WSe2 and hexagonal boron nitride. Using a two-step CVD 
process we are able to synthesize MoS2 on CVD grown graphene. AFM, 
Raman spectroscopy, and Photoluminescence spectroscopy of the MoS2-
graphene heterostructure show a uniform and continuous film on the cm 
scale.  

9:40am  2D+EM+NS+PS+SS+TF-MoM5  Growth of 2D MoS2 Films by 
Magnetron Sputtering, Andrey Voevodin, Air Force Research Laboratory, 
C. Muratore, University of Dayton, J.J. Hu, Air Force Research 
Laboratory/UDRI, B. Wang, M.A. Haque, Pennsylvania State University, 
J.E. Bultman, M.L. Jesperson, Air Force Research Laboratory/UDRI, P.J. 
Shamberger, Texas A&M University, R. Stevenson, Air Force Research 
Laboratory, A. Waite, Air Force Research Laboratory/UTC, M.E. 
McConney, R. Smith, Air Force Research Laboratory 
Growth of two dimensional (2D) MoS2 and similar materials over large 
areas is a critical pre-requisite for seamless integration of next-generation 
van der Waals heterostructures into novel devices. Typical preparation 
approaches with chemical or mechanical exfoliation lack scalability and 
uniformity over appreciable areas (>1 mm) and chemical vapor deposition 
processes require high substrate temperatures. We developed few-layer 
MoS2 growth under non-equilibrium magnetron sputtering conditions 
selected to minimize the MoS2 nucleation density and maximize 2D growth 
of individual crystals [1]. In this process, the thermodynamically driven 
tendency to form islands is accomplished by maximizing atomic mobility 
through the control of incident flux kinetic energies, densities, and arriving 
angle to the substrate while avoiding defect formation (i.e., vacancy 
creation by sputtering of S atoms). Amorphous SiO2, crystalline (0001) 
oriented Al2O3, and (002) oriented graphite substrates were used to grow 
few monolayer thick MoS2 films. Continuous 2D MoS2 films were 
produced over 4 cm2 areas. They were composed of nano-scale domains 
with strong chemical binding between domain boundaries, allowing lift-off 
from the substrate and electronic transport measurements with contact 
separation on the order of centimeters. Their characteristics were similar to 
few-layer MoS2 films produced by exfoliation with a direct band gap in thin 
samples of approximately 1.9 eV from photoluminescense spectra. The 
electron mobility measured for as-grown MoS2 films was very strongly 
dependent on film thickness and substrate choice.  

[1] “Continuous ultra-thin MoS2 films grown by low-temperature physical 
vapor deposition”, C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. 
Bultman, M. L. Jesperson, P.J. Shamberger, A.A. Voevodin, Applied 
Physics Letters (2014) in press. 

10:00am  2D+EM+NS+PS+SS+TF-MoM6  Formation of Graphene on 
the C-face of SiC{0001}: Experiment and Theory, Jun Li, G. He, M. 
Widom, R.M. Feenstra, Carnegie Mellon University 
There are two {0001} surfaces of SiC, the (0001) surface known as the “Si-
face”, and the (000-1) surface or “C-face”. The formation of graphene (by 
heating the SiC to 1100 – 1600 ° C in various gaseous environments) has 
been studied for both surfaces, although it is much better understood on the 
Si-face. In that case, an intermediate C-rich layer, or “buffer layer” forms 
between the graphene and the SiC crystal. This buffer layer has 6√3x6√3-
R30° symmetry; its structure is well established,1 and it acts as a template 
for the formation of subsequent graphene layers. In contrast, graphene 
formation on the C-face is much less well understood. More than one 
interface structure between the graphene and the SiC has been observed,2,3 
and, with one notable exception,4 the quality of the graphene formed on the 
C-face is generally lower than that for the Si-face. 

In this work we provide new experimental and theoretical results that allow 
us to understand graphene formation on the C-face of SiC. Experimentally, 
by heating the SiC in a disilane environment, we map out the phase diagram 
of different surface and interface structures that form on the SiC as a 
function of disilane pressure and sample temperature. New surface 
structures that develop just prior to the graphene formation are observed. 
With additional heating, graphene forms on the surface, but some remnant 
of the surface structure prior to the graphene formation is believed to persist 
at the graphene/SiC interface. From first-principles theory, we find that the 
hydrogen in the disilane environment plays a critical role in the 
surface/interface structures that form. Experimentally, for disilane pressures 
below 5x10-5 Torr, we find a 2x2 surface structure forming prior to 
graphene formation. From theory we identify this structure as consisting of 
a silicon adatom together with a carbon restatom on the surface, with H-
termination of those atoms being possible but not necessary. At higher 
disilane pressures we observe a 4x4 structure, and we identify that as 
consisting of a lower density of Si adatoms than the 2x2, now with at least 
some of the adatoms and restatoms being H-terminated. With graphene 
formation, this structure converts to the observed √43x√43-R± 7.6° 
interface structure. At higher disilane pressures we theoretically predict the 
formation of a surface consisting simply of H-terminated carbon restatoms. 
Experiments are underway to observe that surface, along with subsequent 
graphene formation on the surface. 

(1) Y. Qi et al., PRL 105, 085502 (2010). 
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(2) F. Hiebel et al., PRB 78, 153412 (2008). 

(3) N. Srivastava et al., PRB 85, 041404 (2012). 

(4) W. A. de Heer et al., PNAS 108, 16900 (2011). 

10:40am  2D+EM+NS+PS+SS+TF-MoM8  Graphene on Hexagonal 
Boron Nitride Heterostacks Grown by UHV-CVD on Metal Surfaces, 
Juerg Osterwalder, S. Roth, A. Hemmi, University of Zurich, Switzerland, 
F. Matsui, Nara Institute of Science and Technology, Japan, T. Greber, 
University of Zurich, Switzerland INVITED 
Chemical vapor deposition (CVD) performed under ultra-high vacuum 
conditions on single-crystal metal surfaces enables the growth of large-area 
and high-quality graphene and hexagonal boron nitride (h-BN) single 
layers. We explore the CVD parameter space of precursor pressure and 
temperature in order to go beyond the self-saturating single-layer growth, or 
to grow heterostacks of the two materials. Formed layers are characterized 
structurally by LEED, STM and x-ray photoelectron diffraction. On 
Cu(111) a graphene layer could be grown on a pre-deposited single layer of 
h-BN when using 3-pentanone as a precursor at a pressure of 2.2 mbar and a 
substrate temperature of 1100 K [1]. On Rh(111) the same procedure leads 
to incorporation of carbon into the metal surface layers, while a graphene 
layer is formed only upon a second high-pressure dose [2]. In both cases the 
heterostructures show clearly the stacking sequence and structural and 
ARPES signatures of graphene on h-BN but are far from defect-free.  

[1] S. Roth et al., Nano Lett. 13, 2668 (2013).  

[2] S. Roth, PhD Thesis, Department of Physics, University of Zurich 
(2013). 

11:20am  2D+EM+NS+PS+SS+TF-MoM10  Kinetics of Monolayer 
Graphene Growth by Carbon Segregation on Pd(111), Abbas 
Ebnonnasir, H.S. Mok, Y. Murata, University of California at Los Angeles, 
S. Nie, K.F. McCarty, Sandia National Laboratories, C.V. Ciobanu, 
Colorado School of Mines, S. Kodambaka, University of California at Los 
Angeles 
In this research, using in situ low-energy electron microscopy and density 
functional theory calculations, we elucidate the growth kinetics of 
monolayer graphene on single-crystalline Pd(111). In our experiments, 
carbon saturated Pd(111) samples were cooled down from 900 oC to 
segregate carbon on the surface in the form of graphene. Upon cooling the 
substrate, graphene nucleation begins on bare Pd surface and continues to 
occur during graphene growth. Measurements of graphene growth rates and 
Pd surface work functions along with DFT calculations establish that this 
continued nucleation is due to increasing C adatom concentration on the Pd 
surface with time. We attribute this anomalous phenomenon to a large 
barrier for attachment of C adatoms to graphene coupled with a strong 
binding of the non-graphitic C to the Pd surface. 
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