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8:20am  2D+EM+MS+NS-FrM1  1, 2, 3... Ripples, Gaps and Transport 
in Few-layer Graphene Membranes, ChunNing(Jeanie) Lau, University 
of California, Riverside INVITED 
Graphene, a two - dimensional single atomic layer of carbon, has recently 
emerged as a new model system for condensed matter physics, as well as a 
promising candidate for electronic materials. Though single layer graphene 
is gapless, bilayer and trilayer graphene have tunable band gaps that may be 
induced by out-of-plane electric fields or arise from collective excitation of 
electrons. Here I will present our results on mechanical manipulation and 
transport measurements in bilayer and trilayer graphene devices with 
mobility as high as 400,000 cm2/Vs. We demonstrate ripple formation due 
to thermally or mechanically induced strain, the presence of an intrinsic 
gapped state in bilayer and trilayer graphene at the charge neutrality point 
and evidence for quantum phase transiition. Our results underscore the 
fascinating physics in these 2D membranes, and have implications for band 
gap engineering for graphene electronics and optoelectronic applications. 

9:00am  2D+EM+MS+NS-FrM3  Photoinduced Doping in 
Heterostructures of Graphene and Boron Nitride, Jairo Velasco Jr., L. 
Ju, UC Berkeley, E. Huang, Stanford University, S. Kahn, C. Nosiglia, H.-
Z. Tsai, UC Berkeley, W. Yang, Beijing National Laboratory for Condensed 
Matter Physics, Republic of China, T. Taniguchi, K. Wantanabe, National 
Institute for Materials Science (NIMS), Japan, Y. Zhang, Fudan University, 
Republic of China, G. Zhang, Beijing National Laboratory for Condensed 
Matter Physics, Republic of China, M.F. Crommie, A. Zettl, F. Wang, UC 
Berkeley 
Van der Waals heterostructures (VDH) provide an exciting new platform 
for materials engineering, where a variety of layered materials with 
different electrical, optical and mechanical responses can be stacked 
together to enable new physics and novel functionalities. Here we report an 
emerging optoelectronic phenomenon (i.e. photo-induced modulation 
doping) in the graphene-boron nitride VDH (G/BN heterostructure). We 
find it enables flexible and repeatable writing and erasing of charge doping 
in graphene with visible light. We demonstrate that the photo-induced 
modulation doping maintains the remarkable carrier mobility of the G/BN 
heterostructure, and it can be used to generate spatially varying doping 
profiles like pn junctions. Our work contributes towards understanding light 
matter interactions in VDHs, and innovates a simple technique for creating 
inhomogeneous doping in high mobility graphene devices. This opens the 
door for new scientific studies and applications.  

9:20am  2D+EM+MS+NS-FrM4  Two-dimensional Resistance Map of 
Graphene p-n Junction in the Quantum Hall Regime, NikolaiN. Klimov, 
S. Le, C.A. Richter, National Institute of Standards and Technology (NIST), 
J. Yan, University of Massachusetts, Amherst, E. Comfort, J.U. Lee, 
SUNY-University of Albany, D.B. Newell, National Institute of Standards 
and Technology (NIST) 
Graphene, a two dimensional (2D) electronic system with a unique band 
structure, is a promising material for future electronic devices, especially for 
electrical metrology [1]. Currently, devices based upon GaAs 
heterostructures 2D electron gases (GaAs-2DEG) are used to realize a 
single quantum resistance standard value of (½)h/e2 = 12,906.4035 Ω with 
metrological accuracy. It is important to realize resistance values over a 
wider resistance scale to expand the technical relevance of quantum 
resistance standards.  

In the past, attempts have been made by using parallel or series GaAs-
2DEG Hall bars to achieve multiple or fractional resistance values of h/e2. 
However, the difficulties of fabricating ideal contacts and metal 
interconnects between the Hall bars severely limit the yield of properly 
operating devices. Graphene, with its ability to create both electron and hole 
2D gases on a single Hall bar device without metal interconnects, is an ideal 
platform to overcome this difficulty [2].  

We have fabricated a graphene FET p-n junction device in a Hall bar 
geometry and experimentally characterized it at large magnetic fields to 
determine the range of quantized resistance values that can be obtained. The 
device features two doped polysilicon split gates that are buried in a SiO2 
substrate within 100 nm-150 nm from the surface of graphene. The 
fabrication process achieves an atomically smooth dielectric surface, which 
is needed to preserve the intrinsic band structure of graphene. Independent 

voltage control on these gates allows separate tuning of both type and 
concentration of charge carries in the two parts of graphene conducting 
channel. In addition, a very narrow 150 nm gap between split gates gives a 
very sharp junction. Measurement of the sample’s resistance at different 
gate values and measurement configurations in the quantum Hall regime 
allows us to fully characterize the device and to obtain multiples or 
fractions of the resistance value h/e2 . We will show that our experimental 
results can be explained by the Landauer-Büttiker edge-state transport 
model with the assumption of a partial mixing at the p-n interface. Potential 
application of graphene p-n junction devices for resistance standards with a 
wide range of resistance values other than h/2e2 will be discussed. 
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9:40am  2D+EM+MS+NS-FrM5  Electrical Breakdown and Current 
Carrying Ability of Multilayer MoS2 Transistors, Philip Feng, R. Yang, 
Z. Wang, Case Western Reserve University 
We report the first study of electrical breakdown of multilayer molybdenum 
disulphide (MoS2) transistors through precision electrical measurements and 
simulation that shows the effect of varying the device size and 
conductivities on the breakdown limit. We demonstrate that the multilayer 
devices have better current carrying capabilities compared to thin layer 
devices. We also study the effect of varying MoS2 thickness upon electron 
mobility in the channel. 

MoS2 has recently emerged as a new two-dimensional (2D) semiconducting 
crystal with attractive properties, such as the absence of dangling bonds, 
high thermal stability, and having a thickness-dependent bandgap [#_edn1]. 
While prototype single- and few-layer MoS2 FETs and circuits have been 
demonstrated, in practice multilayer (up to 10s of nanometers) devices may 
be more desirable for certain applications: they can have higher carrier 
mobility and density of states under the same dielectric environment, 
greater mechan ical strength, higher current limit and better 
manufacturability [#_edn2], [#_edn3]. While the breakdown of single layer 
MoS2 transistors has been demonstrated [#_edn4], breakdown of multilayer 
devices has not been studied. 

In this work, we study the electrical breakdown of devices with different 
thicknesses through experimental demonstration and simulation with finite 
element method (FEM). We observe that the breakdown process happens 
gradually with multiple voltage sweeping cycles, and thicker devices 
generally show higher breakdown current, which is also demonstrated in the 
simulation. The highest breakdown current in the measurement is 1.2mA, 
which is one of the highest current reported results so far for MoS2 
transistors. Simulation also shows that with higher conductivity channel, the 
breakdown current and breakdown current density both increase. The high 
field transport characteristics of multilayer MoS2 transistors demonstrate 
that the devices could drive high loads in circuits and could be used for 
circuits that require high power or current. The thickness dependence of 
mobility shows that the device performance can be further improved by 
carefully tuning the device parameters.  

 

[i] [#_ednref1] Q. H. Wang, et al., Nat. Nanotechnol. 7, 699 (2012).  

[ii] [#_ednref2] D. Jariwala, et al., ACS Nano 8, 1102 (2014).  

[iii] [#_ednref3] R. Ganatra, Q. Zhang, ACS Nano (2014), DOI: 
10.1021/nn405938z.  

[iv] [#_ednref4] D. Lembke, A. Kis, ACS Nano 6, 10070 (2012).  

10:00am  2D+EM+MS+NS-FrM6  Lithography-free Fabrication of 
Graphene Devices, Nick Thissen, R.H.J. Vervuurt, Eindhoven University 
of Technology, Netherlands, J.J.L. Mulders, FEI Electron Optics, 
Netherlands, J.W. Weber, A.J.M. Mackus, W.M.M. Kessels, A.A. Bol, 
Eindhoven University of Technology, Netherlands 
Graphene device fabrication on large-area graphene typically involves 
several patterning steps using electron beam or optical lithography, 
followed by graphene etching and metallization for application of metallic 
contacts. However, the resist films and lift-off chemicals used in 
lithography introduce compatibility issues, such as the difficulty of 
removing the resist from the graphene. This resist residue has a negative 
influence on the thermal and electrical properties of the graphene and 
interferes with functionalization of the graphene. This motivates the 
development of a ‘bottom-up’, direct-write, lithography-free fabrication 
method. 

In this work, a lithography-free fabrication method for graphene-based 
devices was developed. As a first step, the method involves direct 
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patterning of large-area graphene by focused ion beam (FIB) in order to 
isolate graphene from the bulk. The patterning of the graphene is performed 
in a DualBeam (SEM / FIB) system, in which a 30 kV FIB is used to locally 
remove graphene from the substrate. An in situ Raman microscope allows 
for direct observation of the graphene quality before and after FIB 
processing, from which it was determined that a low Ga-ion dose of 10 
C/m2 is sufficient for complete graphene removal. By optimizing the pattern 
design, the ion beam current and the background pressure in the DualBeam 
system, unintentional damage of the graphene by scattered ions is almost 
completely prevented. 

After FIB patterning, as a second step a direct-write atomic layer deposition 
(ALD) technique is applied in the same system to locally deposit contacts to 
the isolated graphene. In the direct-write ALD technique, the patterning 
capability of electron beam induced deposition (EBID) is combined with 
the material quality of ALD. A thin seed layer consisting of small Pt grains 
in amorphous carbon is deposited on the graphene by EBID in the desired 
contact pattern. Subsequently, a selective ALD process purifies the seed 
layers and builds them into high-quality Pt contacts. This combined 
approach yields virtually 100% pure Pt (resistivity of 12 μΩcm) with a 
lateral resolution of 10 nm[1]. This chemical approach to contact deposition 
is expected to yield lower contact resistances compared to conventional 
physical deposition techniques. 

By combining patterning and direct contact deposition in the same system, 
graphene devices were fabricated from large-area graphene without the use 
of lithography. First results from sub-optimal devices demonstrate field-
effect mobilities approaching 500 cm2/Vs and contact resistances as low as 
(40 ± 30) Ω.  

[1] A.J.M. Mackus et al., Nanoscale 4, 4477 (2012) 

10:40am  2D+EM+MS+NS-FrM8  Electronic Transport in Transition 
Metal Dichalcogenides, Joerg Appenzeller, Purdue University INVITED 
Since the discovery of graphene for electronic applications, there has been a 
substantial worldwide effort to explore other layered materials. Transition 
metal dichalcogenides (TMDs) like MoS2, MoSe2, or WSe2, to just name a 
few, not only offer the desired ultra-thin body structure that translates into 
superior electrostatics as desirable for nanoelectronics applications, but also 
exhibit a sizable band gap. While to date the ideal application space for 
these materials has not been identified, it is obvious that only through a 
detailed understanding of the underlying transport in these layered materials 
intrinsic properties that lend themselves to particular applications can be 
uncovered. 

In my presentation I will first discuss the benefits of an ultra-thin body 
structure for scaled tunneling FET applications including tunneling devices. 
Contacts play a particularly crucial role in this context and can easily mask 
the intrinsic performance of TMDs as will be discussed based on 
experimental Schottky barrier tunneling data obtained from MoS2, MoSe2 
and WSe2 field-effect transistors. A careful analysis of all these material 
systems reveals details about Schottky barrier heights for electron and hole 
injection as well as the band gap. These findings are then put into the 
context of channel length scaling and layer thickness dependence of three-
terminal TMD devices based on MoS2 transistors. Last, experimental data 
on the band-to-band tunneling in partially gated WSe2 device structures will 
be discussed and projections about the potential usefulness of TMDs for 
tunneling device applications will be made. 

11:20am  2D+EM+MS+NS-FrM10  Controlled Synthesis and Fuel Cell 
Application of Carbon Nanowalls, Hiroki Kondo, S. Imai, K. Ishikawa, 
M. Sekine, M. Hori, Nagoya University, Japan, M. Hiramatsu, Meijo 
University, Japan 
Carbon nanowalls (CNWs) are one of carbon nanomaterials and contain 
stacks of graphene sheets vertically standing on a substrate. Each wall with 
the top edge is continuous crystallographically through bending or 
branching and composed of nanographite domains. Recently, we have 
developed the formation method of the ultra-high-density over 1013 cm-2 Pt 
nanoparticles on the whole surface area of the CNWs with a diameter of 2-3 
nm employing metal-organic chemical fluid deposition (MOCFD) method 
in supercritical fluid (SCF). They are promising as a catalytic electrodes for 
a polymer electrolyte fuel cell because of its high-specific-surface-area and 
high aspect ratio. On the other hand, while it is known that Pt nanoparticles 
are poisoned by CO below 100°C, it is reported that Pt-Au nanoparticles are 
excellent candidate for a low-temperature anode electrocatalyst. In this 
study, supporting processes of Pt-Au nanoparticles on the CNWs using the 
SCF-MOCFD method and their catalytic properties were investigated. 

We used the SCF-MOCFD system to support Pt and Au nanoparticles on 
the CNWs. Firstly, Pt nanoparticles were supported using 1wt% 
(CH3C5H4)(CH3)3Pt solution (2 ml). Then, Au nanoparticles were 
subsequently supported using (CH3)2Au(CH3COCHCOCH3) solution (1 
ml). Both precursors were diluted by n-hexane [CH3(CH2)4CH3].  

According to the SEM images of the CNWs after the supporting processes 
of only Pt nanoparticles and, both Pt and Au ones, the nanoparticles are 
supported on the entire surface area of each CNWs in the both cases. It is 
also found that the diameter and its distribution of the nanoparticles 
decrease after the second Au supporting process, while its density increases. 
This means that the relatively large Pt nanoparticles are effectively removed 
and small Au nanoparticles are simultaneously supported at the second 
supporting process. On the other hand, we evaluated cyclic voltammetry 
(CV) characteristics using CNWs with different-density Pt nanoparticles, in 
which density of 3.0x1012 cm-2and diameter of 1.1 nm obtained for 10 min 
supporting and, density of 8.3x1012 and diameter of 1.5 nm obtained for 30 
min supporting. Peaks related to adsorption and desorption of hydrogen 
were found in both cases. With increasing the supporting time, the specific 
surface area of Pt evaluated from the CV about twofold increased. 
However, according to the the TEM images, the ratio of surface area of Pt 
nanoparticles are about fivefold. It is deduced that some parts of Pt 
nanoparticles are inactive. Therefore, there results indicate that not the 
crystallinity control of CNWs are essential to improve the catalytic 
performance.  
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