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2:20pm  2D+EM+MI+MN+NS+SS+TF-ThA1  Optoelectronics of Two-
Dimensional Semiconductors, Xiaodong Xu, University of Washington 
 INVITED 
Two dimensional transition metal dichalcogenides are a recent addition to 
the 2D electronic materials family. They have shown outstanding electrical 
and optical properties for new optoelectronic device concepts. In this talk, 
we will first discuss the unique interplay between spin, valley, and layer 
pseudospins in bilayer WSe2. Such coupling effects lead to electrical control 
of spin states and optical generation of valley coherence through interlayer 
trions, where electrons and holes are localized in different layers. We will 
then talk about optoelectronic devices based on monolayer WSe2, including 
p-n junctions as light emitting diodes and hybrid monolayer 
semiconductor/photonic crystal cavity devices. We will conclude the talk 
with a discussion of the optoelectronic properties of MoSe2-WSe2 
heterostructures. 

3:00pm  2D+EM+MI+MN+NS+SS+TF-ThA3  Theory of Graphene 
Transport Barriers in the Specular Limit, Daniel Gunlycke, C.T. White, 
Naval Research Laboratory 
Offering room-temperature ballistic electron transport well over one 
micron, while being atomically thin and planar, graphene is undeniably a 
promising material for future nanoelectronic devices. Presently, however, 
switchable devices have normally low on-off ratios, a reflection of the 
challenge of selectively blocking electron and hole carriers from 
propagating across the graphene surface. This has stimulated a lot of 
research on different methods for making graphene nanoribbons that exhibit 
suitable band gaps. An alternative way to obtain a controllable gap takes 
advantage of resonant tunneling across a pair of transport barriers. For the 
latter approach, the key is to find a barrier that is fairly reflective but not so 
much as to effectively cut off all transport across it. 

In this presentation, we present a model for straight transport barriers in 
graphene in the specular limit. Using the Lippmann-Schwinger equation, we 
obtain the wave function, from which we derive the reflection and 
transmission probabilities, as well as the local density of itinerant states. 
This local density of states exhibits fluctuations arising from quantum 
interference between incoming and outgoing matter waves that allow the 
transport properties of a barrier to be estimated without explicitly probing 
the current across the barrier. Our model is tested against exact multi-
channel, tight-binding quantum transport calculations for graphene with 
weak local potentials, local strain, local adsorption, and a locally defective 
structure. As the model parameters are related to observable quantities, they 
could be obtained from theory and/or experiment, allowing the model to be 
adopted even when the precise details of the barrier are unknown. 

3:20pm  2D+EM+MI+MN+NS+SS+TF-ThA4  Tip-induced Potential 
Confinement on Graphene in Scanning Tunneling Microscopy 
Measurement, Yue Zhao, J. Chae, J.E. Wyrick, NIST/CNST, F.D. 
Natterer, Ecole Polytechnique Fédérale de Lausanne (EPFL), France, S. 
Jung, Korea Research Institute of Standards and Science (KRISS), A.F. 
Young, C.R. Dean, L. Wang, Y. Gao, Columbia University, J.N. Rodrigues, 
Graphene Research Centre, NUS, Singapore, K. Watanabe, T. Taniguchi, 
National Institute for Materials Science (NIMS), Japan, S. Adam, Graphene 
Research Centre, NUS, Singapore, J.C. Hone, K. Shepard, P. Kim, 
Columbia University, N.B. Zhitenev, J.A. Stroscio, NIST/CNST 
Graphene is a two-dimensional-electron-gas(2DEG) system with exposed 
surface, which allows scanning tunneling microscopy(STM) to investigate 
the electron-electron interaction associated with the Dirac nature on a local 
scale, with a variety of tuning knobs, such as carrier density, spatially 
varying disorder potential, and applied magnetic field. However, the 
electron-electron interaction in graphene is sensitive to the disorder details. 
Moreover, tip induced potential confinement can significantly complicate 
the interpretation of STM experiment. Utilizing a high mobility graphene 
device with low residual disorder, we can minimize the effect of local 
potential fluctuation, to better understand the role tip-induced potential 
plays in the measurement. We observed the emergency of large spectra 
gaps, modification to graphene Landau levels (LLs), and quantum dots with 
changing size due to the spatially inhomogeneous tip gating. 

4:00pm  2D+EM+MI+MN+NS+SS+TF-ThA6  Topological Phase 
Transitions and Spin-orbit Density Waves, Hugo Dil, Ecole 
Polytechnique Fédérale de Lausanne (EPFL), Switzerland INVITED 
In recent years systems where the spin-orbit interaction (SOI) is not just a 
perturbation but the main energy scale have received increasing attention. In 
combination with a broken inversion symmetry in the crystal structure or at 
interfaces, SOI will lift the spin degeneracy and induce a complex Fermi 
surfaces and spin textures with spin momentum locking [1,2]. Furthermore, 
the SOI can drive the system through a phase transition to a so-called 
topological insulator. Being an insulator in the bulk these systems are 
characterized by spin-polarized, topologically protected interface states. 

After a short introduction to the role of topology in the band structure of 
solids I will give an overview of our main spin- and angle-resolved 
photoemission (SARPES) results on a variety of non-interacting topological 
insulators [3]. One of the questions is how the spin texture evolves around a 
topological transition. We explored the occurrence of spin polarized states 
around a SOI driven topological transition [4] and around a structure driven 
topological transition [5]. In both cases we observe spin-polarized precursor 
states, which indicate that although the topological transition is sharp, the 
response of the system is more gradual.  

From a fundamental point of view the truly interesting aspect of non-trivial 
spin textures lies in their combination with other interactions. This can 
result in a variety of phenomena, cumulating in the creation of the elusive 
Majorana Fermion. An example of a combination of interactions is our 
recent verification with SARPES of SmB6 as a topological Kondo insulator 
[6]. In topologically trivial systems, interactions can lead to the formation of 
a so-called spin-orbit density wave. I will show how the combination of a 
large spin-splitting and Fermi nesting leads to the formation of such a state 
and can explain the anisotropic behavior of Pb nanowires [7]. Furthermore, 
I will present our recent SARPES results for transition metal oxide surfaces 
where a subtle interplay between ferroelectricity and magnetic order results 
in the formation of a single spin-polarized energy contour. The occurrence 
of superconductivity in such systems could render it a 2D Majorana 
platform.  
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4:40pm  2D+EM+MI+MN+NS+SS+TF-ThA8  The Symmetry 
Dependent Band Structure of MoS2, Duy Le, University of Central 
Florida, T. Komesu, University of Nebraska-Lincoln, Q. Ma, University of 
California, Riverside, E.F. Schwier, H. Iwasawa, Hiroshima University, 
Japan, M. Shimada, Higashi-Hiroshima, Japan, T.S. Rahman, University of 
Central Florida, L. Bartles, University of California, Riverside, P.A. 
Dowben, University of Nebraska-Lincoln 
We will present results of density functional theory (DFT) based 
calculations of symmetry dependent band structures of single crystal 
MoS2(0001) surface together with symmetry-polarized angle resolved 
photoemission spectroscopy (ARPES) derived experimental band structure. 
The good agreement of the DFT band structure with the experimentally 
derived bands with even and odd symmetries, attests to the reliability of the 
results. We performed ARPES at the Hiroshima Synchrotron, determining 
the MoS2 band structure separately for both p-, and s-, polarized to 
distinguish even and odd symmetry, and the experimentally determined 
dispersion, in accordance with expectations and experimental confirmation 
of C3v symmetry, argues in favor of an experimental band structure obtained 
from single domains. The comparison of theory and experiment provides 
strong indications that the bands at the top of the valence band are 
dominated by Mo 4d states. These states and indeed placement of the 
valence band can be perturbed by adsorbates. Indeed, we find that, under 
the effect of Na adsorption, the changing placement of the valence band 
structure of MoS2 clearly indicate the Na atoms donate electrons to MoS2 
and that the Fermi energy level shifts as much as 0.5 eV with respect to the 
top of MoS2’s valance band. Surprisingly, Na adsorption does not perturb 
the MoS2 band dispersion significantly. We will discuss these results in the 
light of those obtained for single layer MoS2 for insights and clarity. 
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5:00pm  2D+EM+MI+MN+NS+SS+TF-ThA9  CuInIIIP2S6 - Room 
Temperature Layered Ferroelectric, Alex Belianinov, P. Maksymovych, 
Oak Ridge National Laboratory, A. Dziaugys, Vilnius University, Lithuania, 
Q. He, Oak Ridge National Laboratory, E. Eliseev, National Academy of 
Sciences of Ukraine, A,. Borisevich, Oak Ridge National Laboratory, A. 
Morozovska, NAS of Ukraine, J. Banys, Vilnius University, Lithuania, Y. 
Vysochanskii, Uzhgorod University, Ukraine, S.V. Kalinin, Oak Ridge 
National Laboratory 
We have utilized ambient and Ultra High Vacuum Scanning Probe 
Microscopy tools to explore ferroelectric properties in cleaved 2D flakes of 
copper indium thiophosphate, CuInIIIP2S6 (CITP), and report on size effect 
and presently achievable limits of ferroelectric phase stability. CITP is an 
unusual example of a layered, anti-collinear, uncompensated, two-sublattice 
ferroelectric system. These are the only materials known to display “2-D” 
ferroelectric semiconductor behavior in a van-der-Waals crystal. The 
material exhibits a first-order phase transition of order–disorder type from 
the paraelectric to the ferrielectric phase at Tc = 315 K. Our observations 
suggest the presence of stable ferroelectric polarization as evidenced by 
domain structures, rewritable polarization, and hysteresis loops. These 
observations suggest that flakes above 100 nm have bulk-like polarization 
and domain structures, whereas below 50 nm polarization disappears. 
Furthermore, the materials have measurable ionic mobility, as evidenced 
both by macroscopic measurements and by formation of surface damage 
above tip bias of 4 V, likely due to copper reduction. We ascribe this 
behavior to well-known instability of polarization due to depolarization 
field, along with internal screening by mobile Cu ions, as suggested by their 
high ionic mobility. 

Acknowledgement: 

Research for (AB, PM, QH, AB, SVK) was supported by the US 
Department of Energy, Basic Energy Sciences, Materials Sciences and 
Engineering Division. Research was conducted at the Center for Nanophase 
Materials Sciences, which is sponsored at Oak Ridge National Laboratory 
by the Scientific User Facilities Division, Office of Basic Energy Sciences, 
US Department of Energy. 

5:20pm  2D+EM+MI+MN+NS+SS+TF-ThA10  Doping Efficiency and 
Mechanisms of Single and Randomly Stacked Bilayer Graphene by 
Iodine Adsorption, Hokwon Kim, A. Tyurnina, Univ. Grenoble Alpes/ 
CEA, LETI, France, J.-F. Guillet, J.-P. Simonato, J. Dijon, Univ. Grenoble 
Alpes/ CEA, LITEN, France, D. Rouchon, D. Mariolle, N. Chevalier, O.J. 
Renault, Univ. Grenoble Alpes/ CEA, LETI, France 
The precise control of graphene’s conductivity and work function is crucial 
in developing practical applications of graphene based electronics. In order 
to enhance the conductivity of graphene, we employed a simple doping 
method where graphene films produced by chemical vapor deposition and 
transferred onto SiO2, Al2O3, and WO3 substrates are p-doped with iodine 
vapor through physisorption at temperature of ~ 100 °C [1-3]. The work 
function values and iodine to carbon ratios of the one-layer (1L) and two-
layer (2L) folded regions were analyzed by high spatial- and energy 
resolution X-ray photoelectron emission microscopy (XPEEM) on a 
NanoESCA instrument. After the iodine doping, the work function values 
were significantly increased up to ~0.4 eV and ~0.5 eV, respectively, for 1L 
and 2L graphene on SiO2/Si. This higher degree of doping by iodine was 
corroborated by I 3d5/2 core level imaging of the same area where the 2L 
graphene exhibited significantly larger concentration of iodine (2 at. % 
versus 1 at. %) likely due to the intercalation of iodine at the inter-layer 
space.  

The main iodine species identified by high resolution core level X-ray 
photoemission spectroscopy and Raman spectroscopy were I3

- and I5
- poly-

iodide anionic complexes with slightly higher concentration of I5
- in 2L than 

1L graphene possibly due to different doping mechanisms. Temperature 
dependent ultra-high-vacuum, in-situ annealing of the doped films has 
demonstrated that most of iodine is removed above 300 °C for the both 1L 
and 2L regions, although a significant removal of iodine is observed for 2L 
graphene at temperature as low as 100 °C. Surprisingly, after the complete 
removal of iodine by annealing, the work function value did not return to 
the original one before the doping treatment and remained at a much higher 
value. This can be ascribed to the residual hydrocarbon contaminations 
interacting with the atomic defects within the graphene layer that lead to 
unintentional n-type doping in our samples[4]. 

Acknowledgement: The XPEEM and KFM measurements were performed 
at the Nanocharacterization Platform (PFNC).  
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5:40pm  2D+EM+MI+MN+NS+SS+TF-ThA11  Use of XPS for Device 
Characterization, P. Aydogan, E.O. Polat, C. Kocabas, Sefik Suzer, 
Bilkent University, Turkey 
A noncontact chemical and electrical measurement technique of XPS is 
utilized to investigate a number of devices made of graphene. The main 
objective of the technique is to trace chemical and location specific surface 
potential variations as shifts of the XPS peak positions under operating 
conditions. Devices consisting of graphene; (i) acting as a simple resistive 
element between two gold electrodes, (ii) a semiconducting sheet controlled 
by a back-gate, and (iii) between the source and the drain metal electrodes 
in a full transistor geometry, have been analyzed by recording the Au4f of 
the metal electrodes, the C1s of the graphene layer, and the O1s (or N1s) 
peaks of the silicon oxide (or nitride) of the substrate. The advantage of this 
technique is its ability to assess element specific surface electrical potentials 
of devices under operation based on the deviations of the core level peak 
positions in surface domains/structures. Detection of the variations in 
electrical potentials and especially their responses to various stimuli gives 
unprecedented information about the chemical nature as well as the location 
of structural and/or other types of defects as a result of doping, oxidation, 
reduction, etc. 
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