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8:00am  2D+AS+HI+NS+SS-ThM1  Stitching and Stacking for 
Atomically Thin Circuitry, Jiwoong Park, Cornell University INVITED 
The development of large scale growth methods based on chemical vapor 
deposition (CVD) has enabled production of single-atom-thick films with 
diverse electrical properties, including graphene (conductor), h-BN 
(insulator), and MoS2 (semiconductor). Precise vertical stacking and lateral 
stitching of these 2D materials will provide rational means for building 
ultrathin heterostructures with complex functionality. However, large scale 
production and control of these structures requires new characterization and 
fabrication approaches. In this talk, I will first discuss the structure and 
physical properties unique to CVD graphene in single and bilayers. Using 
the atomic-resolution imaging as well as a dark-field transmission electron 
microscopy (TEM) technique, our group investigated the structure of grain 
boundaries in CVD graphene and its impact on the mechanical, electrical, 
and chemical properties. This allowed us to produce CVD graphene with 
optimized electrical properties. We also reported a new patterned regrowth 
method to fabricate 2D lateral heterojunctions entirely made of graphene 
and h-BN, which enables the development of atomically thin integrated 
circuitry. If time allows, I will also discuss our recent results on the large 
scale growth of high quality single layer MoS2 as well as graphene film 
with a uniform lattice orientation. Our characterization and growth approach 
would ultimately allow the fabrication of electrically isolated active and 
passive elements embedded in continuous, one-atom-thick sheets, which 
could be manipulated and stacked to form complex devices at the ultimate 
thickness limit. 

8:40am  2D+AS+HI+NS+SS-ThM3  Vertical and Lateral 
Heterostructures of Carbon Nanomembranes (CNMs) and Graphene, 
Andreas Winter, University of Bielefeld, Germany, M. Woszczyna, R. 
Stosch, T. Weimann, F. Ahrelrs, Physikalisch-Technische Bundesanstalt, 
Germany, A. Turchanin, University of Bielefeld, Germany 
Heterostructures of graphene with other 2D materials are of great interest 
for nanoscience and nanotechnology. However, their fabrication is still not 
a trivial task. Here we present the engineering and characterization of (i) 
vertical and (ii) lateral heterostructures of molecular thin (~1 nm) dielectric 
carbon nanomembranes (CNMs) made of aromatic molecules [1] and 
single-layer (SLG) graphene sheets. (i) The vertical CNM/SLG 
heterostructures with terminal amino-groups (NH2-) are assembled via the 
mechanical transfer onto oxidized silicon wafers. We show by 
complementary spectroscopy and microscopy techniques as well as by 
electric transport measurements that functional amino groups are brought 
into close vicinity of the SLG sheets and that electric transport of the SLG 
is not impaired by this assembly, leading to the non-destructive chemical 
functionalization of graphene [2]. (ii) The lateral heterostructures are 
engineered using electron-irradiation-induced crosslinking of SLG sheets 
with CNMs. We demonstrate reliable production of well-defined laterally 
patterned CNM-SLG heterostructures of various sized and architectures on 
solid substrates and as free-standing sheets, and characterize their properties 
by Raman spectroscopy and helium ion microscopy. 

[1] A. Turchanin and A. Gölzhäuser, Carbon nanomembranes from self-
assembled monolayers: Functional surfaces without bulk. Prog. Surf. Sci. 
87, 108-162 (2012) 

[2] M. Woszczyna et al., All-carbon vertical van der Waals heterostructures: 
Non-destructive functionalization of graphene for electronic applications. 
Adv. Mater. 26 (2014) DOI: 10.1002/adma.201400948 

9:00am  2D+AS+HI+NS+SS-ThM4  Gate Tunable Carbon Nanotube - 
Single Layer MoS2 p-n Heterojunctions, Deep Jariwala*, V.K. Sangwan, 
C.-C. Wu, P.L. Prabhumirashi, M.L. Geier, T.J. Marks, L.J. Lauhon, M.C. 
Hersam, Northwestern University 
The isolation of graphene and the subsequent reports on its electronic 
properties have spurred tremendous interest in a variety of two dimensional 
(2D) materials for electronic device applications. Layered semiconducting 
transition metal dichalcogenides (TMDCs) of Mo and W have emerged as 
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promising alternatives to graphene for optoelectronic applications due to 
their finite band gap in the visible portion of the electromagnetic spectrum.1 
The atomically thin structure of these 2D materials coupled with van der 
Waals bonding between adjacent layers allows their stacking into 
atomically sharp heterostructures with defect-free interfaces, in contrast to 
epitaxially grown III-V semiconductor heterostructures where the material 
choices are constrained by lattice matching. Additionally, the few atom 
thickness of the individual layers enables doping modulation of the 
overlying layers in a heterostructure using a global back gate. While a large 
number of heterostructure devices employing graphene have been reported, 
it’s gapless band structure prevents the formation of a large potential barrier 
for charge separation and current rectification. Consequently, a p-n 
heterojunction diode derived from ultrathin materials is notably absent and 
significantly constrains the fabrication of complex electronic and 
optoelectronic circuits. Here we demonstrate a gate-tunable p-n 
heterojunction diode using semiconducting single-walled carbon nanotubes 
(s-SWCNTs) and single-layer molybdenum disulphide (SL-MoS2) as 
atomically thin p-type and n-type semiconductors, respectively. The vertical 
stacking of these two direct band gap semiconductors forms a 
heterojunction with electrical characteristics that can be tuned with an 
applied gate bias over a wide range of charge transport behavior, ranging 
from insulating to rectifying with forward-to-reverse bias current ratios 
exceeding 104. In addition, the gate-dependent characteristics of this diode 
exhibit a unique 'anti-ambipolar' behavior with two off-states at either 
extremes of the gate voltage range and a maximum on-state current between 
them. This heterojunction diode also responds to optical irradiation with 
photoresponse time < 15 μs.2 We anticipate that the novel properties and 
characteristics of this p-n heterojunction can be widely generalized to other 
atomically thin materials systems.  

REFERENCES:  

1. Jariwala, D. et al. Emerging Device Applications for Semiconducting 
Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014 , 8, 
1102–1120. 

2. Jariwala, D. et al. Gate-Tunable Carbon Nanotube–MoS2 Heterojunction 
p-n Diode. Proc. Natl. Acad. Sci. U.S.A. 2013 , 110, 18076–18080. 

9:20am  2D+AS+HI+NS+SS-ThM5  Graphene Transfer onto sub 1nm 
Al2O3/TiOPc/Graphene Gate Stacks, Iljo Kwak, J.H. Park, University of 
California at San Diego, H.C.P. Movva, University of Texas at Austin, E.K. 
Kinder, H.L. Lu, University of Notre Dame, A.C. Kummel, University of 
California at San Diego 
A novel transfer method with chemically controlled interfacial adhesion is 
reported for the fabrication of novel logic devices. This method allows 
direct transfer onto gate stacks and eliminates the possibility of Au 
electrodes deposition could shorting the thin oxide prior to transfer. The top 
graphene layer was grown on a Cu layer on a SiO2/Si substrate by CVD. Au 
electrodes were deposited on top of the graphene by e-beam evaporation. To 
transfer the graphene layer, PIB (Polyisobutylene) were drop cast on top of 
graphene prior to bonding of the Au/graphene/Cu to a PDMS (Poly-
dimethylsiloxane) film. The PIB serves to moderate the adhesion between 
the PDMS (Poly-dimethylsiloxane) and the Au electrodes. The PDMS 
provides mechanical support. Afterwards, the 
PDMS/PIB/Au/graphene/Cu/SiO2/Si stack was immersed in ammonium 
persulfate solution to dissolve the Cu, releasing the top graphene stack. The 
bottom gate stack was HOPG (highly ordered pyrolytic graphite) with a 
sub-nano Al2O3 film on a monolayer TiOPc(titanyl phthalocynine) film. 
The monolayer TiOPc was deposited via MBE at 100C and annealed to 
250C to insure a monolayer film. The TiOPc acts as a nucleation layer for 
the oxide ALD. The Al2O3 layer was deposited by ALD using TMA 
(Trimethylaluminum) and H2O at 100 C. The PDMS/PIB/Au/Graphene 
stack was placed on the gate stack, and PDMS was removed. Using hexane 
solution, the rePIB layer was dissolved, leaving clean graphene surface. To 
measure the oxide characteristics, an AFM was converted into a capacitance 
meter. This measurement allows non-destructive probing of 
Au/graphene/Al2O3/TiOPc/graphene structure while conventional probe 
station could damage the oxide or electrodes.  

9:40am  2D+AS+HI+NS+SS-ThM6  Effect of Monolayer Substrates on 
the Electronic Structure of Single-Layer MoS2, Alfredo Ramirez-Torres, 
D.T. Le, T.S. Rahman, University of Central FLorida 
We have performed first-principles calculations based on density functional 
theory (DFT) utilizing the optB88-vdW functional to study structural and 
electronic properties of a single layer of MoS2 deposited on single-layer 
substrates of hexagonal boron nitride (BN), graphene and silicene. All have 
a honeycomb structure; hence the formation of heterostructures is expected. 
Since the lattice mismatch between MoS2 and these substrates is large, we 
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have considered different periodicities among layers to reduce as far as 
possible the incommensurability between lattices. Our results show that BN 
barely affects the electronic structure of isolate single-layer MoS2; the DFT 
gap remains proximately unchanged. Graphene and silicene severely 
modify the electronic structure introducing additional states within the 
optical gap. Adsorption on graphene produces that the system turns like a 
zero band gap semiconductor bringing the conduction bands of MoS2 down 
to the Fermi level of graphene. Adsorption on silicene shifts both valence 
and conduction bands of MoS2, towards the Fermi level of silicene, in 
addition to inducing a gap of about 50 meV in the silicene itself. 

This work was partially supported by CONACYT (México) Postdoctoral 
Fellowship Program (number 204065) and DOE grant DE-FG02-
07ER46354 

11:00am  2D+AS+HI+NS+SS-ThM10  Ballistic Transport in Epitaxial 
Graphene Nanoribbons, Walt de Heer, Georgia Institute of Technology 
 INVITED 
Graphene nanoribbons are essential components in future graphene 
nanoelectronics. However, in typical nanoribbons produced from 
lithographically patterned exfoliated graphene, the charge carriers 
travel only about 10 nanometers between scattering events, resulting in 
minimum sheet resistances of about 1 kW In contrast 40 nm wide 
graphene nanoribbons that are epitaxially grown on silicon carbide are 
single channel room temperature ballistic conductors on greater than 
10 µm length scale, similarly to metallic carbon nanotubes. This is 
equivalent to sheet resistances below 1W surpassing theoretical 
predictions for perfect graphene by at least an order of magnitude. In 
neutral graphene ribbons, we show that transport is dominated by two 
modes. One is ballistic and temperature independent; the other is 
thermally activated. Transport is protected from back-scattering, 
possibly reflecting ground state properties of neutral graphene. At 
room temperature the resistance of both modes abruptly increases non-
linearly with increasing length, one at a length of 16 µm and the other 
at 160 nm. Besides their importance for fundamental science, since 
epitaxial graphene nanoribbons are readily produced by the thousands, 
their room temperature ballistic transport properties can be used in 
advanced nanoelectronics as well. 

11:40am  2D+AS+HI+NS+SS-ThM12  Solution-Synthesized Graphene 
Nanoribbons, Alexander Sinitskii, University of Nebraska - Lincoln 
In this talk I will discuss a recently developed bottom-up approach for gram 
quantities of narrow graphene nanoribbons that are less than 2 nm wide and 
have atomically precise armchair edges. These graphene nanoribbons have 
been characterized by a number of microscopic (STM, AFM, SEM, TEM) 
and spectroscopic (XPS, UPS/IPES, UV-vis-NIR, IR and Raman 
spectroscopy) techniques. The properties of graphene nanoribbons could be 
tuned by incorporation of nitrogen atoms in their edges. Narrow graphene 
nanoribbons have a large electronic bandgap, which makes them promising 
for applications in field-effect transistors with high on-off ratios, as well as 
bulk applications, including coatings, composites and photovoltaic devices. 

12:00pm  2D+AS+HI+NS+SS-ThM13  Graphene Silicon Interfaces at 
the Two-Dimensional Limit, Brian Kiraly, A.J. Mannix, M.C. Hersam, 
Northwestern University, N.P. Guisinger, Argonne National Laboratory 
Artificial van der Waals heterostructures have demonstrated both significant 
improvements of graphene's intrinsic properties and entirely new properties 
of their own. Early interest in these structures was based on nearly ideal 
carrier mobility in graphene on two-dimensional (2D) hexagonal boron 
nitride. Although exfoliation and reassembly of bulk vdW solids has yielded 
impressive initial results, this method inherently limits the geometry and 
constituent materials of these structures. Growth of 2D heterostructures has 
been demonstrated, but mainly limited to the prototypical graphene/hBN 
system. Adding new constituent materials, particularly those with electronic 
heterogeneity, to these 2D heterostructures allows them to be engineered 
with a variety of new properties.  

We present the growth and characterization of interfaces between an 
atomically thin silicon layer and graphene. First, graphene is grown on 
Ag(111) via atomic carbon deposition at temperatures from 600°C -700°C. 
Following the growth of graphene, atomic silicon is evaporated on the 
graphene-covered Ag(111) substrate at 320°C-360°C. The resulting silicon 
growth results in facetted domains capped with a honeycomb lattice with 
periodicity 6.4 Å; Raman spectroscopy reveals peaks at 520 cm-1 and 900-
1000 cm-1 thatcoincide precisely with bulk diamond cubic silicon, indicating 
these domains are comprised of sp3 bonded crystalline Si. These 2D sheets 
of silicon demonstrate both semiconducting character and a honeycomb 
lattice is attributed to a silver-based reconstruction of the Si(111) surface. 
The resulting silicon domains grow in two different configurations with 
respect to the dendritic graphene: (1) silicon domains appear to grow 
directly on the Ag(111) surface and terminate at the graphene boundaries. 

These in-plane interfaces are atomically-precise and clearly resolved via 
scanning tunneling microscopy. Electronically, the density of states of both 
isolated constituent materials persist to these interfaces within the resolution 
of the measurement, indicating little interaction at the border. (2) The 
silicon growth is observed underneath the existing graphene flakes. The 
vertically stacked silicon graphene domains are identified via atomically 
resolved imaging through the graphene domains at larger biases where 
graphene is transparent under STM. Furthermore, the vertical materials 
interfaces demonstrate distinct electronic signatures from either constituent 
material. The resulting interfaces represent atomically pristine interfaces 
between graphene and a sp3 bonded semiconducting Si film, demonstrating 
a significant step forward in the diversification of van der Waals 
heterostructures.  
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