Thursday Morning, November 13, 2014

2D Materials Focus Topic Room: 310 - Session 2D+AS+HI+NS+SS-ThM

Nanostructures including 2D Heterostructures,

Patterning of 2D Materials Moderator: Kirill Bolotin, Vanderbilt University

2D+AS+HI+NS+SS-ThM1 Stitching and Stacking for 8:00am Atomically Thin Circuitry, Jiwoong Park, Cornell University INVITED The development of large scale growth methods based on chemical vapor deposition (CVD) has enabled production of single-atom-thick films with diverse electrical properties, including graphene (conductor), h-BN (insulator), and MoS2 (semiconductor). Precise vertical stacking and lateral stitching of these 2D materials will provide rational means for building ultrathin heterostructures with complex functionality. However, large scale production and control of these structures requires new characterization and fabrication approaches. In this talk, I will first discuss the structure and physical properties unique to CVD graphene in single and bilayers. Using the atomic-resolution imaging as well as a dark-field transmission electron microscopy (TEM) technique, our group investigated the structure of grain boundaries in CVD graphene and its impact on the mechanical, electrical, and chemical properties. This allowed us to produce CVD graphene with optimized electrical properties. We also reported a new patterned regrowth method to fabricate 2D lateral heterojunctions entirely made of graphene and h-BN, which enables the development of atomically thin integrated circuitry. If time allows, I will also discuss our recent results on the large scale growth of high quality single layer MoS2 as well as graphene film with a uniform lattice orientation. Our characterization and growth approach would ultimately allow the fabrication of electrically isolated active and passive elements embedded in continuous, one-atom-thick sheets, which could be manipulated and stacked to form complex devices at the ultimate thickness limit.

8:40am 2D+AS+HI+NS+SS-ThM3 Vertical and Lateral Heterostructures of Carbon Nanomembranes (CNMs) and Graphene, Andreas Winter, University of Bielefeld, Germany, M. Woszczyna, R. Stosch, T. Weimann, F. Ahrelrs, Physikalisch-Technische Bundesanstalt, Germany, A. Turchanin, University of Bielefeld, Germany

Heterostructures of graphene with other 2D materials are of great interest for nanoscience and nanotechnology. However, their fabrication is still not a trivial task. Here we present the engineering and characterization of (i) vertical and (ii) lateral heterostructures of molecular thin (~1 nm) dielectric carbon nanomembranes (CNMs) made of aromatic molecules [1] and single-layer (SLG) graphene sheets. (i) The vertical CNM/SLG heterostructures with terminal amino-groups (NH2-) are assembled via the mechanical transfer onto oxidized silicon wafers. We show by complementary spectroscopy and microscopy techniques as well as by electric transport measurements that functional amino groups are brought into close vicinity of the SLG sheets and that electric transport of the SLG is not impaired by this assembly, leading to the non-destructive chemical functionalization of graphene [2]. (ii) The lateral heterostructures are engineered using electron-irradiation-induced crosslinking of SLG sheets with CNMs. We demonstrate reliable production of well-defined laterally patterned CNM-SLG heterostructures of various sized and architectures on solid substrates and as free-standing sheets, and characterize their properties by Raman spectroscopy and helium ion microscopy.

[1] A. Turchanin and A. Gölzhäuser, Carbon nanomembranes from selfassembled monolayers: Functional surfaces without bulk. *Prog. Surf. Sci.* 87, 108-162 (2012)

[2] M. Woszczyna et al., All-carbon vertical van der Waals heterostructures: Non-destructive functionalization of graphene for electronic applications. *Adv. Mater.* 26 (2014) DOI: 10.1002/adma.201400948

9:00am 2D+AS+HI+NS+SS-ThM4 Gate Tunable Carbon Nanotube -Single Layer MoS₂ p-n Heterojunctions, *Deep Jariwala**, V.K. Sangwan, C.-C. Wu, P.L. Prabhumirashi, M.L. Geier, T.J. Marks, L.J. Lauhon, M.C. Hersam, Northwestern University

The isolation of graphene and the subsequent reports on its electronic properties have spurred tremendous interest in a variety of two dimensional (2D) materials for electronic device applications. Layered semiconducting transition metal dichalcogenides (TMDCs) of Mo and W have emerged as

promising alternatives to graphene for optoelectronic applications due to their finite band gap in the visible portion of the electromagnetic spectrum. The atomically thin structure of these 2D materials coupled with van der Waals bonding between adjacent layers allows their stacking into atomically sharp heterostructures with defect-free interfaces, in contrast to epitaxially grown III-V semiconductor heterostructures where the material choices are constrained by lattice matching. Additionally, the few atom thickness of the individual layers enables doping modulation of the overlying layers in a heterostructure using a global back gate. While a large number of heterostructure devices employing graphene have been reported, it's gapless band structure prevents the formation of a large potential barrier for charge separation and current rectification. Consequently, a p-n heterojunction diode derived from ultrathin materials is notably absent and significantly constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (s-SWCNTs) and single-layer molybdenum disulphide (SL-MoS₂) as atomically thin p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias over a wide range of charge transport behavior, ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 10⁴. In addition, the gate-dependent characteristics of this diode exhibit a unique 'anti-ambipolar' behavior with two off-states at either extremes of the gate voltage range and a maximum on-state current between them. This heterojunction diode also responds to optical irradiation with photoresponse time $< 15 \ \mu s^2$ We anticipate that the novel properties and characteristics of this p-n heterojunction can be widely generalized to other atomically thin materials systems.

REFERENCES:

1. Jariwala, D. et al. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. *ACS Nano* 2014, 8, 1102–1120.

2. Jariwala, D. et al. Gate-Tunable Carbon Nanotube–MoS₂ Heterojunction p-n Diode. *Proc. Natl. Acad. Sci. U.S.A.* 2013, 110, 18076–18080.

9:20am 2D+AS+HI+NS+SS-ThM5 Graphene Transfer onto sub 1nm Al₂O₃/TiOPc/Graphene Gate Stacks, *Iljo Kwak*, *J.H. Park*, University of California at San Diego, *H.C.P. Movva*, University of Texas at Austin, *E.K. Kinder, H.L. Lu*, University of Notre Dame, *A.C. Kummel*, University of California at San Diego

A novel transfer method with chemically controlled interfacial adhesion is reported for the fabrication of novel logic devices. This method allows direct transfer onto gate stacks and eliminates the possibility of Au electrodes deposition could shorting the thin oxide prior to transfer. The top graphene layer was grown on a Cu layer on a SiO₂/Si substrate by CVD. Au electrodes were deposited on top of the graphene by e-beam evaporation. To transfer the graphene layer, PIB (Polyisobutylene) were drop cast on top of graphene prior to bonding of the Au/graphene/Cu to a PDMS (Polydimethylsiloxane) film. The PIB serves to moderate the adhesion between the PDMS (Poly-dimethylsiloxane) and the Au electrodes. The PDMS provides mechanical support. Afterwards the PDMS/PIB/Au/graphene/Cu/SiO2/Si stack was immersed in ammonium persulfate solution to dissolve the Cu, releasing the top graphene stack. The bottom gate stack was HOPG (highly ordered pyrolytic graphite) with a sub-nano Al₂O₃ film on a monolayer TiOPc(titanyl phthalocynine) film. The monolayer TiOPc was deposited via MBE at 100C and annealed to 250C to insure a monolayer film. The TiOPc acts as a nucleation layer for the oxide ALD. The Al₂O₃ layer was deposited by ALD using TMA (Trimethylaluminum) and H2O at 100 C. The PDMS/PIB/Au/Graphene stack was placed on the gate stack, and PDMS was removed. Using hexane solution, the rePIB layer was dissolved, leaving clean graphene surface. To measure the oxide characteristics, an AFM was converted into a capacitance This measurement allows non-destructive probing of meter. Au/graphene/Al2O3/TiOPc/graphene structure while conventional probe station could damage the oxide or electrodes.

9:40am 2D+AS+HI+NS+SS-ThM6 Effect of Monolayer Substrates on the Electronic Structure of Single-Layer MoS₂, *Alfredo Ramirez-Torres*, *D.T. Le, T.S. Rahman*, University of Central FLorida

We have performed first-principles calculations based on density functional theory (DFT) utilizing the optB88-vdW functional to study structural and electronic properties of a single layer of MoS2 deposited on single-layer substrates of hexagonal boron nitride (BN), graphene and silicene. All have a honeycomb structure; hence the formation of heterostructures is expected. Since the lattice mismatch between MoS2 and these substrates is large, we

have considered different periodicities among layers to reduce as far as possible the incommensurability between lattices. Our results show that BN barely affects the electronic structure of isolate single-layer MoS2; the DFT gap remains proximately unchanged. Graphene and silicene severely modify the electronic structure introducing additional states within the optical gap. Adsorption on graphene produces that the system turns like a zero band gap semiconductor bringing the conduction bands of MoS2 down to the Fermi level of graphene. Adsorption on silicene shifts both valence and conduction bands of MoS2, towards the Fermi level of silicene, in addition to inducing a gap of about 50 meV in the silicene itself.

This work was partially supported by CONACYT (México) Postdoctoral Fellowship Program (number 204065) and DOE grant DE-FG02-07ER46354

11:00am 2D+AS+HI+NS+SS-ThM10 Ballistic Transport in Epitaxial Graphene Nanoribbons, Walt de Heer, Georgia Institute of Technology INVITED

Graphene nanoribbons are essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about 10 nanometers between scattering events, resulting in minimum sheet resistances of about 1 kW In contrast 40 nm wide graphene nanoribbons that are epitaxially grown on silicon carbide are single channel room temperature ballistic conductors on greater than 10 µm length scale, similarly to metallic carbon nanotubes. This is equivalent to sheet resistances below 1W surpassing theoretical predictions for perfect graphene by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground state properties of neutral graphene. At room temperature the resistance of both modes abruptly increases nonlinearly with increasing length, one at a length of 16 μm and the other at 160 nm. Besides their importance for fundamental science, since epitaxial graphene nanoribbons are readily produced by the thousands, their room temperature ballistic transport properties can be used in advanced nanoelectronics as well.

11:40am 2D+AS+HI+NS+SS-ThM12 Solution-Synthesized Graphene Nanoribbons, *Alexander Sinitskii*, University of Nebraska - Lincoln

In this talk I will discuss a recently developed bottom-up approach for gram quantities of narrow graphene nanoribbons that are less than 2 nm wide and have atomically precise armchair edges. These graphene nanoribbons have been characterized by a number of microscopic (STM, AFM, SEM, TEM) and spectroscopic (XPS, UPS/IPES, UV-vis-NIR, IR and Raman spectroscopy) techniques. The properties of graphene nanoribbons could be tuned by incorporation of nitrogen atoms in their edges. Narrow graphene nanoribbons have a large electronic bandgap, which makes them promising for applications in field-effect transistors with high on-off ratios, as well as bulk applications, including coatings, composites and photovoltaic devices.

12:00pm 2D+AS+HI+NS+SS-ThM13 Graphene Silicon Interfaces at the Two-Dimensional Limit, Brian Kiraly, A.J. Mannix, M.C. Hersam,

Northwestern University, *N.P. Guisinger*, Argonne National Laboratory Artificial van der Waals heterostructures have demonstrated both significant improvements of graphene's intrinsic properties and entirely new properties of their own. Early interest in these structures was based on nearly ideal carrier mobility in graphene on two-dimensional (2D) hexagonal boron nitride. Although exfoliation and reassembly of bulk vdW solids has yielded impressive initial results, this method inherently limits the geometry and constituent materials of these structures. Growth of 2D heterostructures has been demonstrated, but mainly limited to the prototypical graphene/hBN system. Adding new constituent materials, particularly those with electronic heterogeneity, to these 2D heterostructures allows them to be engineered with a variety of new properties.

We present the growth and characterization of interfaces between an atomically thin silicon layer and graphene. First, graphene is grown on Ag(111) via atomic carbon deposition at temperatures from 600°C -700°C. Following the growth of graphene, atomic silicon is evaporated on the graphene-covered Ag(111) substrate at 320°C-360°C. The resulting silicon growth results in facetted domains capped with a honeycomb lattice with periodicity 6.4 Å; Raman spectroscopy reveals peaks at 520 cm⁻¹ and 900-1000 cm⁻¹ thatcoincide precisely with bulk diamond cubic silicon, indicating these domains are comprised of *sp*³ bonded crystalline Si. These 2D sheets of silicon demonstrate both semiconducting character and a honeycomb lattice is attributed to a silver-based reconstruction of the Si(111) surface. The resulting silicon domains grow in two different configurations with directly on the Ag(111) surface and terminate at the graphene boundaries.

These in-plane interfaces are atomically-precise and clearly resolved via scanning tunneling microscopy. Electronically, the density of states of both isolated constituent materials persist to these interfaces within the resolution of the measurement, indicating little interaction at the border. (2) The silicon growth is observed *underneath* the existing graphene flakes. The vertically stacked silicon graphene domains are identified via atomically resolved imaging *through* the graphene domains at larger biases where graphene is transparent under STM. Furthermore, the vertical materials interfaces demonstrate distinct electronic signatures from either constituent material. The resulting interfaces represent atomically pristine interfaces between graphene and a sp^3 bonded semiconducting Si film, demonstrating a significant step forward in the diversification of van der Waals heterostructures.

Authors Index

Bold page numbers indicate the presenter

-A-

Ahrelrs, F.: 2D+AS+HI+NS+SS-ThM3, 1 – D —

de Heer, W.A.: 2D+AS+HI+NS+SS-ThM10, 2 — G —

Geier, M.L.: 2D+AS+HI+NS+SS-ThM4, 1

Guisinger, N.P.: 2D+AS+HI+NS+SS-ThM13, 2

— Н —

Hersam, M.C.: 2D+AS+HI+NS+SS-ThM13, 2; 2D+AS+HI+NS+SS-ThM4, 1

— I —

Jariwala, D.: 2D+AS+HI+NS+SS-ThM4, 1 -K-

Kinder, E.K.: 2D+AS+HI+NS+SS-ThM5, 1

Kiraly, B.T.: 2D+AS+HI+NS+SS-ThM13, 2 Kummel, A.C.: 2D+AS+HI+NS+SS-ThM5, 1 Kwak, I.J.: 2D+AS+HI+NS+SS-ThM5, 1

– L —

Lauhon, L.J.: 2D+AS+HI+NS+SS-ThM4, 1 Le, D.T.: 2D+AS+HI+NS+SS-ThM6, 1 Lu, H.L.: 2D+AS+HI+NS+SS-ThM5, 1

– M —

Mannix, A.J.: 2D+AS+HI+NS+SS-ThM13, 2 Marks, T.J.: 2D+AS+HI+NS+SS-ThM4, 1 Movva, H.C.P.: 2D+AS+HI+NS+SS-ThM5, 1 — P —

Park, J.: 2D+AS+HI+NS+SS-ThM1, 1 Park, J.H.: 2D+AS+HI+NS+SS-ThM5, 1 Prabhumirashi, P.L.: 2D+AS+HI+NS+SS-ThM4, 1

— R —

Rahman, T.S.: 2D+AS+HI+NS+SS-ThM6, 1 Ramirez-Torres, A.: 2D+AS+HI+NS+SS-ThM6, 1 - S -

Sangwan, V.K.: 2D+AS+HI+NS+SS-ThM4, 1 Sinitskii, A.: 2D+AS+HI+NS+SS-ThM12, 2 Stosch, R.: 2D+AS+HI+NS+SS-ThM3, 1

— T —

Turchanin, A.: 2D+AS+HI+NS+SS-ThM3, 1 – w —

Weimann, T.: 2D+AS+HI+NS+SS-ThM3, 1 Winter, A.: 2D+AS+HI+NS+SS-ThM3, 1 Woszczyna, M.: 2D+AS+HI+NS+SS-ThM3, 1 Wu, C.-C.: 2D+AS+HI+NS+SS-ThM4, 1