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2D Materials Characterization including Microscopy and 
Spectroscopy  
Moderator: Manish Chhowalla, Rutgers University 

2:20pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA1  Layer-Dependent 
Electronic and Physical Structure of 2D van der Waals Crystals, 
Richard Osgood, Columbia University INVITED 
Because of their weak Van der Waals interlayer bonding transition-metal 
dichalcogenide (TMDC) semiconductors can be fabricated into atomically 
thin two-dimensional (2D) crystals with substantial ~ 1-2 eV bandgaps. As 
one example, monolayer MoS2 consists of a single layer of Mo atoms 
sandwiched between two layers of S atoms in a trigonal prismatic structure. 
The TMDC 2D system has attracted great interest because of its distinctive 
electronic and optical properties, such as (i) a transition from indirect-to-
direct band gap in going from the multilayer to monolayer crystal due to a 
missing interlayer interaction in monolayer form and (ii) strong spin-orbit-
coupling-induced split valence bands, i.e. 100’s of meV, due to broken 
inversion symmetry, which makes TMDCs interesting for spin-physics 
physics and devices. Both properties have been predicted with density 
functional theory (DFT) calculations and indirectly demonstrated using 
photoluminescence and Raman spectroscopy. 

Recently we have made a series of direct observations of the thickness-
dependent electronic-band and crystal structure of TMDCs of both 
exfoliated and CVD grown sample. Because of the relatively modest sample 
sizes we have used micrometer-scale, angle-resolved photo-emission 
spectroscopy (micro-ARPES) of both the exfoliated and chemical-vapor-
deposition-grown crystals; these measurements provide direct evidence for 
the shifting of the valence band maximum from gamma bar (Brillouin zone 
center) to kappa bar (Brillouin zone corner), as the sample thickness 
decreases from bulk to monolayer. Our initial results were with MoS2 and 
are described in a preliminary way in Refs 1 and 2. Our TMDC 
experimental results are compared with rigorous DFT calculations of both 
the bands and the UV transitions matrix elements. The results show an 
evolution in band structure, which is consistent with an indirect-to-direct 
bandgap transition in going from few-layer to monolayer TMDC and can be 
attributed to changes in quantum confinement as the number of layer 
decreases. Our microARPES and, subsequently, higher resolution 
nanospectroscopy data provide clear measurements of the hole effective 
mass, the strain present in the monolayer crystal films, and the valence-band 
spin-orbit splitting. Our results explain the low hole mobility of monolayer 
MoS2 compared to thicker MoS2 and show clearly the strong orbit split 
energies. Our results, using nanoLEED and LEEM also provide insight into 
the structure and defects in monolayer films. Experiments using K-doping 
of single-crystal samples and resulting level shifts are also described.  
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3:00pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA3  X-ray Photoemission 
and Electron Energy Loss Spectroscopy Investigation of the Band Gap 
and Band Alignment for h-BN and MoS2 Materials and Interfaces, 
Benjamin French, J. Brockman, M. French, M. Kuhn, J.D. Bielefeld, S.W. 
King, Intel Corporation, E. Bersch, G. Bersuker, SEMATECH, J. 
DiStefano, Y.C. Lin, J.A. Robinson, Penn State University 
Hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2) are two 
dimensional (2D) materials of significant interest for future nano-electronic 
devices. Due to a wide band gap (~ 6 eV), close lattice matching (< 2%) and 
atomic planarity, hexagonal boron nitride (h-BN) is of primary interest as a 
potential substrate and gate dielectric in graphene channel transistor 
devices. In contrast, MoS2 is a 2D semiconducting material with a band gap 
of ~ 1.8 eV that is attractive as a possible complement or alternative to 

graphene for nano-electronic devices requiring a large band gap. A key 
property for the success of both h-BN and MoS2 in such devices is the 
interfacial band alignment with graphene, the gate contact metallization and 
the surrounding insulating dielectric materials. In this regard, we have 
utilized x-ray photoelectron spectroscopy (XPS) to determine the Schottky 
barrier and valence band offsets present at the interfaces between plasma 
enhanced chemically vapor deposited amorphous h-BN:H and chemically 
vapor deposited MoS2. In combination, we have utilized reflection electron 
energy loss spectroscopy (REELS) to investigate the band gap of both h-BN 
and MoS2 materials to deduce the conduction band alignment. We show that 
in many instances the valence and conduction band offsets are significant 
and favorable for MoS2/h-BN transistor devices. 

3:20pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA4  STM/STS 
Characterization of MoS2 Monolayers and Nanostructures, A. Mills, C. 
Chen, Virginia Tech, Y. Yu, L. Cao, North Carolina State University, 
Chenggang Tao, Virginia Tech 
Atomically thin molybdenum disulfide (MoS2) and nanostructures have 
been the subject of intense research efforts for their fascinating properties 
and potential applications in future electronic and optical devices. 
Especially, monolayer MoS2, an atomically thin semiconductor with a direct 
band gap, as opposed to an indirect band gap in bulk MoS2, has been 
demonstrated as field effect transistors, optoelectronic devices and chemical 
sensors. In our experimental study, Monolayer MoS2 and MoS2 triangular 
nanostructures are synthesized through a self-limiting chemical vapor 
deposition (CVD) approach. The precursor materials, MoCl5 and sulfur, 
react at high temperatures to produce MoS2 species and subsequently 
precipitate onto substrates to yield MoS2 films and triangular 
nanostructures. Using scanning tunneling microscopy (STM), we have 
investigated the structural and electronic properties of monolayer MoS2 
grown on glassy carbon and triangular MoS2 nanostructures on highly 
ordered pyrolytic graphite (HOPG). We will also discuss our scanning 
tunneling spectroscopy (STS) measurements on these structures.  

4:40pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA8  Surface 
Characterization of Metal Oxide Layers Grown on CVD Graphene and 
Spin Precession Measurements, Akitomo Matsubayashi, University at 
Albany-SUNY, W. Nolting, University of Albany-SUNY, D. Sinha, 
University at Albany-SUNY, A. Jayanthinarasimham, J.U. Lee, University 
of Albany-SUNY, V.P. LaBella, University at Albany-SUNY 
Ultra thin metal oxide films grown on graphene can be utilized as dielectric 
barriers between metals and graphene to help isolate a metal contact from 
the graphene channel for device applications. This is particularly important 
for graphene based spintronic devices as tunnel barriers between the 
ferromagnetic metal as a spin injector and graphene have been known to 
increase the spin relaxation time measured utilizing non-local detection 
technique of spin precession by avoiding the conductivity mismatch 
problem. However, simply depositing metal oxide layers such as aluminum 
oxide on graphene results in non-uniform film lowering the quality of the 
interface barrier. We will present a systematic study of aluminum oxide 
layers grown on CVD graphene under ultra-high vacuum conditions with 
and without titanium seed layers. The aluminum oxide layers with the 0.2 
nm titanium seed layers showed reduced surface roughness. The chemical 
and structural composition determined by XPS will be also presented that 
shows full oxidation of the aluminum and partial oxidation of the titanium. 
The I-V characteristic study performed to electrically evaluate the metal 
oxide and the preliminary results of non-local spin precession 
measurements will be also addressed. 

5:00pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA9  Morphology of CVD-
grown Hexagonal Boron Nitride on Cu Foils, Karthik Sridhara, W.G. 
Cullen, University of Maryland, College Park, J.K. Hite, Naval Research 
Laboratory, M.S. Fuhrer, Monash University, Australia, D.K. Gaskill, B.N. 
Feigelson, Naval Research Laboratory 
Hexagonal boron nitride (h-BN) has grown into prominence as a dielectric 
for graphene heterostructures. h-BN and graphene have been grown using 
chemical vapor deposition on various transition metal substrates. Compared 
to graphene, the morphology of CVD-grown h-BN on Cu has not been as 
widely studied. Here, we present a systematic study of the morphology of 
hexagonal boron nitride (h-BN) grown on polycrystalline Cu foils by 
chemical vapor deposition. The growth of h-BN is performed at ~1000°C in 
atmospheric pressure CVD with Ammonia Borane (H3NBH3) as the 
precursor. The copper foils, used as catalytic substrates, are thermally 
annealed at ~1030°C for >5 hours prior to growth and cooled slowly 
following growth termination. We utilized Ultra-high vacuum Scanning 
Tunneling Microscopy (STM), ambient AFM and SEM to assess the 
morphology of the CVD grown h-BN films. Highly symmetric single 
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crystallites of h-BN are observed for sub-monolayer growth, in agreement 
with recent reports. We consistently observe a corrugated topographic 
structure within the h-BN crystallites which is distinctly different from the 
surrounding copper surface, and this is consistently seen in STM, AFM, and 
high-resolution SEM. Our aim is to understand the nature of this difference 
and whether it might be due to effects of differential thermal contraction 
between h-BN and copper. However, complications arise due to possible 
changes in the copper substrate topography post-growth due to surface 
oxidation of the copper. Preliminary results with lateral force microscopy 
(LFM, frictional mode) show that these corrugations are unidirectional in a 
single Cu grain irrespective of the orientation of the h-BN crystal and 
generate frictional forces 200% greater than on the surrounding copper 
surface, reminiscent of earlier reports of unique frictional behavior in 
atomically-thin membranes [1]. STM and AFM are also used to study the 
twin crystal boundaries of h-BN. Preliminary STM observations indicate 
that merging h-BN crystals consistently have a gap of about 5 nm between 
them. The results of this study are independent of small variations of growth 
conditions.  

References: 

[1] C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. Carpick, and J. Hone, 
“Frictional characteristics of atomically thin sheets,” Science (New York, 
N.Y.), vol. 328, no. 5974. pp. 76–80, 01-Apr-2010. 

5:20pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA10  Influence of 
Chemisorbed Oxygen on the Growth of Graphene on Cu(100) and 
Cu(111) by Chemical Vapor Deposition, EngWen Ong, University at 
Albany-SUNY, Z.R. Robinson, U.S. Naval Research Laboratory, T.R. 
Mowll, P. Tyagi, University at Albany-SUNY, H. Geisler, SUNY College 
at Oneonta, C.A. Ventrice, Jr., University at Albany-SUNY 
The influence of chemisorbed oxygen on the growth of graphene by 
catalytic decomposition of ethylene in an ultra-high vacuum (UHV) 
chamber on both the Cu(100) and Cu(111) surfaces has been studied. A 
custom UHV compatible heater stage was constructed that allows heating of 
a crystal to temperatures as high as 1000 °C at hydrocarbon pressures of up 
to 100 mTorr. System recovery to the low 10-10 Torr range is achieved 
within a few minutes of opening the gate valve to the turbo pump. The 
crystal structure of the graphene films was characterized with in-situ low 
energy electron diffraction (LEED), and the growth morphology was 
monitored by ex-situ scanning electron microscopy (SEM). For the clean 
Cu(100) substrate, heating from room temperature to the growth 
temperature while dosing with ethylene resulted in the formation of 
epitaxial graphene films. The crystal quality was found to depend strongly 
on the growth temperature. At 900 °C, well-ordered two-domain graphene 
films were formed. For the Cu(111) surface, heating from room temperature 
to the growth temperature while dosing with ethylene did not result in the 
formation of graphene. This is attributed to the lower catalytic activity of 
the (111) surface and the relatively high vapor pressure of the Cu surface. 
The use of an Ar overpressure to suppress Cu sublimation during the 
growth resulted in the formation of predominately single-domain epitaxial 
graphene films. Predosing either the Cu(100) or Cu(111) surface with a 
chemisorbed layer of oxygen before graphene growth was found to 
adversely affect the crystal quality of the graphene overlayers by inducing a 
much higher degree of rotational disorder of the graphene grains with 
respect to the substrate. The SEM analysis revealed that the nucleation rate 
of the graphene islands dropped by an order of magnitude after predosing 
either the Cu(100) or Cu(111) surface with a chemisorbed oxygen layer 
before growth. On the other hand, the average area of each graphene island 
was observed to increase by at least an order of magnitude. Therefore, the 
presence of oxygen during graphene growth affects both the relative 
orientation and average size of grains within the films grown on both 
substrates. 

5:40pm  2D+AS+HI+MC+NS+PS+SP+SS-TuA11  Novel Materials 
Properties at Atomically Thin Limit, Zhi-Xun Shen, Stanford University 
 INVITED 
In this talk, I will discuss recent progresses in uncovering novel materials 
properties at ultra-thin limit, with focus on mono-unit-cell superconductor 
FeSe and semiconductor MoSe2 respectively. 

The observation of a large superconducting-like energy gap which opens at 
temperatures up to 65 K in single unit cell (1UC) thick iron selenide films 
on SrTiO3(FeSe/STO) has generated tremendous interest. A challenge is to 
understand the cause of enhanced Cooper pairing strength in this system, 
and possibly increase superconducting Tc. In this talk, we show angle-
resolved photoemission spectroscopy, mutual inductance, and other 
measurements on 1UC and multi-UC thick FeSe films grown on Nb-doped 
SrTiO3. Our data provide clear evidence for strong cross-interface electron-
phonon coupling in single UC, raising the possibility that large pairing gap 
are caused by the strong coupling between the FeSe electrons and certain 

collective modes of SrTiO3. This suggests a pathway of “integrated 
functional components” approach to boost superconducting properties. 

The intense interest of quantum systems in confined geometries is further 
amplified by the recent discovery of large enhancement in photo-
luminescence quantum efficiency and a potential route to “valleytronics” in 
atomically thin layered transition metal dichalcogenides (TMDs) MX2 (M = 
Mo, W; X = S, Se, Te), which are closely related to the indirect to direct 
band gap transition in the single layer limit. Using angle-resolved 
photoemission spectroscopy (ARPES) on high quality thin film samples of 
MoSe2 grown by molecular beam epitaxy (MBE), we have made a direct 
observation of a distinct transition from indirect to direct band gap as the 
thickness of the sample is reduced to a monolayer. The experimental band 
structure indicates a stronger tendency of monolayer MoSe2 towards direct 
band gap with larger gap size than theoretical prediction. A comparison of 
directly measured ARPES band gap and optical data led to important new 
insights on semiconductor physics in 2D. Moreover, our finding of a 
significant spin-splitting of ~180meV at the valence band maximum (VBM) 
of a monolayer MoSe2 film could greatly expand its possible application in 
spintronic devices.  

If time permits, I will also discuss the superconductivity in CaC6 and its 
implication on a possible pathway for superconducting graphene. 
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