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2:00pm  2D+AS+EM+NS+SS-MoA1  Cutting and Assembling 2 
Nanometer Voids in Single Layer Hexagonal Boron Nitride, Thomas 
Greber, H.Y. Cun, M. Iannuzzi, A. Hemmi, J. Osterwalder, University of 
Zurich, Switzerland INVITED 
Argon implantation beneath hexagonal boron nitride nanomesh on Rh(111) 
[1] leads to the formation of vacancy and interstitial defects [2]. The 
nanomesh is a single layer of hexagonal boron nitride on Rh(111), where 
13x13 h-BN units accommodate on 12x12 Rh unit cells. The resulting 
super-honeycomb has a lattice constant of 3.2 nm and consists in regions 
where the h-BN “wets” the Rh substrate (pores), and regions where h-BN is 
quasi freestanding (wires) [3]. 

The interstitial defects are called “nanotents”, where atoms are trapped 
beneath the ultimately thin “rainfly” made of a single layer of h-BN [2,4]. 
They are stable at room temperature and survive exposure to air. 

The vacancy defects are sites where a boron or a nitrogen atom was kicked 
out by the Ar ion impact. If the implanted structures are annealed to 900 K 
the can-opener effect occurs: 2 nm h-BN-flakes or “lids” are cut out of the 
h-BN nanomesh and 2 nm voids form [2]. At higher temperatures the 
resulting voids may diffuse and assemble, due to their repulsive interaction, 
in a super-superstructure with some order, i.e., a nearest neighbor distance 
of about 15 nm. Near the disintegration temperature of the h-BN nanomesh 
we finally observe self-healing of the voids in the nanomesh, which we 
assign to their annihilation in larger holes in the structure. 

The report bases on scanning tunneling microscopy, x-ray photoelectron 
spectroscopy, molecular dynamics and density functional theory 
calculations. 
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2:40pm  2D+AS+EM+NS+SS-MoA3  Engineering Structural Defects in 
Graphene Materials, Jeremy Robinson, M. Zalalutdinov, J. Culbertson, C. 
Junkermier, P.E. Sheehan, T. Reinecke, A. Friedman, Naval Research 
Laboratory 
Graphene’s atomic thinness makes it highly sensitive to surface adsorbates 
or defects within its carbon backbone. Aside from the known effects and 
impact on electronic properties, here we demonstrate the impact of defects 
on the mechanical properties and the response of mechanical resonators. In 
particular, once defects are formed in atomically-thin materials they can be 
quite mobile and form more complicated defect structures such as bi- or 
tetra-vacancy clusters. We execute experiments using mechanical drum 
resonators made from single- to multi- to many-layer graphene systems. We 
use both CVD grown graphene and reduced graphene oxide (rGO) films to 
capture a wide range of defect structures. By measuring the fundamental 
frequency response of the resonators (in the MHz range) we extract 
properties such as tension, quality factor, and modulus as a function of 
external manipulation [1]. For highly defective rGO films measuring 10-
40nm thick, we can tune the frequency response by 500% and quality factor 
by 20x through laser annealing, which effectively rearranges defects 
throughout the film [1]. Alternatively, using graphene 1-4 layers thick, we 
find the resonator response is significantly more sensitive to the formation 
and annihilation of meta-stable defects, such as the tetra-vacancy structure. 
We will show how the defect mobility and resonator response changes with 
different energy photons and come to understand these differences based on 
calculated defect migration energies of different defects types in graphene.  

[1] Nano Letters12, 4212 (2012) 

3:00pm  2D+AS+EM+NS+SS-MoA4  Graphene Cleaning using a Low 
Energy Ar Ion Beam, KiSeok Kim, G. Yeom, Sungkyunkwan University, 
Republic of Korea 
Recently, graphene has been widely investigated due to the superior 
electrical, mechanical, thermal, and chemical properties. Especially, CVD 
graphene which was grown on Cu foil and transferred to various substrates 
using PMMA has been used most widely due to the possible large area 
applications such as electronic devices for displays, semiconductors, etc. 
However, in order to apply the transferred CVD graphene to the various 
electronic device fabrication, PMMA residue on the graphene surface 
formed during the transfer process and lithography process needs to be 
completely removed without damage. Various methods have been 
investigated to remove the residue on the graphene surface such as current 
cleaning, heat treatment, chemical cleaning, etc. However, it is reported that 
these methods are not effective in removing the residue on graphene or not 
applicable to industry.  

In this study, a controlled Ar ion beam has been used to effectively remove 
the PMMA residue on graphene surface. By controlling the Ar ion beam 
condition, the residue on graphene surface could be removed while 
minimizing the damage on the graphene surface. Especially, by lowering 
the Ar beam energy less than 10 eV, it was possible to effectively remove 
the PMMA residue without damaging the graphene. The removal of PMMA 
residue on the graphene surface could be identified using Raman 
Spectroscopy showing the red shift of 2D peak (2670 cm-1) and blue shift of 
G peak (1580 cm-1) in addition to the decrease of RMS roughness from 
1.3nm to 0.3 nm using an AFM (Atomic Force Microscopy). The 
effectiveness of graphene cleaning was also confirmed by XPS (X-ray 
Photoelectron Spectroscopy), by the uniform deposition of ALD HfO2 layer 
on the cleaned graphene surface, by measuring the electrical properties of 
deposited ALD HfO2, etc. 

3:40pm  2D+AS+EM+NS+SS-MoA6  Electronic Structure Modification 
in van der Waals Heterostructures: Interlayer Hybridization in the 
Case of Graphene/MoS2, Matthias Batzill, H. Coy-Diaz, University of 
South Florida, M.C. Asensio, Synchrotron Soleil, France, J. Avila, 
Synchrotron Soleil 
Artificial van der Waals heterostructures promise to combine materials with 
diverse properties. Simple mechanical stacking or conventional growth of 
molecular hetero-layers would enable fabrication of novel materials or 
device-structures with atomically precise interfaces. Because covalent 
bonding in these layered materials is limited to molecular-planes, interface 
interactions between dissimilar materials are expected to modify the 
properties of the individual layers only weakly. Here we prepare 
graphene/MoS2 heterostuctures by transferring CVD-grown graphene onto a 
MoS2 substrate. It is shown that high quality interfaces between graphene 
and MoS2 can be obtained by UHV annealing . The quality of the graphene 
is demonstrated by atomic resolution scanning tunneling microscopy of 
ultraflat graphene. The electronic structure of the interface between the 
polycrystalline graphene and a MoS2 substrate is measured by angle 
resolved photoemission spectroscopy (ARPES) and nano-ARPES utilizing a 
focused photon beam at the SOLEIL synchrotron. We show that at the 
Fermi-level graphene exhibits a perfect, gapless and undoped Dirac-cone. 
However, in regions where the π-band of graphene overlaps with states of 
the MoS2 substrate, opening of several band-gaps are observed. This 
demonstrates that the electronic properties in van der Waals heterostructures 
can be significantly modified by interlayer interaction and thus 
exemplifying opportunities for tuning materials properties of graphene and 
other 2D-materials by interfacing them with dissimilar van-der Waals 
materials. 

4:00pm  2D+AS+EM+NS+SS-MoA7  Edge States and Exposure to 
Hydrogen of Silicon at the 2D Limit on Ag(111), A.J. Mannix, B.T. 
Kiraly, Argonne National Laboratory, M.C. Hersam, Northwestern 
University, Nathan Guisinger, Argonne National Laboratory 
Chemical functionalization of atomically thin materials results in significant 
modifications to their electronic properties, which can be exploited in 
device applications. Compared to the chemical inertness of graphene, 2D 
silicon is expected to exhibit greater reactivity, and thus a greater 
amenability to chemical functionalization. Among potential 
functionalization chemistries, hydrogen termination is favored for its 
relative simplicity and proven efficacy with graphene and bulk Si surfaces. 
Using ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we 
have studied the temperature-dependent effects of exposing 2D silicon 
platelets grown on Ag(111) to molecular and atomic hydrogen. At low 
doses, atomic hydrogen results in limited adsorption and temperature 
dependent etching. In the bulk, the formation of vacancies and extended 
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etch pits is observed. In addition, edge states can play a critical role in the 
electronic properties of 2D materials. We have also examined at the atomic-
scale the edges of 2D silicon platelets. 

4:20pm  2D+AS+EM+NS+SS-MoA8  Chlorine Trap-Doping for 
Transparent, Conductive, Thermally Stable and Damage-Free 
Graphene, Pham Viet Phuong, K.N. Kim, M.H. Jeon, K.S. Kim, G. Yeom, 
Sungkyunkwan University, Republic of Korea 
We propose a novel doping method of graphene by cyclic trap-doping with 
low energy chlorine adsorption. Low energy chlorine adsorption for 
graphene chlorination avoided defect (D-band) formation during doping by 
maintaining the π-bonding of the graphene, which affects conductivity. In 
addition, by trapping chlorine dopants between the graphene layers, the 
proposed doping method dramatically decreased the sheet resistance by 
~88% at an optimized condition. Among the reported doping methods 
including chemical, plasma, photochemical methods etc., the proposed 
doping method is believed to be the most promising for producing graphene 
of extremely high transmittance, low sheet resistance, high thermal stability, 
and high flexibility for use in various flexible electronic devices. Results of 
angle resolved X-ray photoelectron spectroscopy (XPS), high-resolution 
transmission electron spectroscopy (HR-TEM), Raman spectroscopy, 
ultraviolet-Visible spectroscopy (UV-Vis) and sheet resistance, showed that 
this method is also non-destructive and controllable. The sheet resistance of 
the doped tri-layer graphene was 70 Ω/sq at 94% transmittance, which was 
maintained for more than 6.5 h at 230°C. Moreover, the defect intensity of 
graphene was not increased during the cyclic trap-doping. 

4:40pm  2D+AS+EM+NS+SS-MoA9  Modification of Graphene by 
Neutral Beam Irradiation and Edge Structure Analysis, Takeru Okada, 
S. Samukawa, Tohoku University, Japan 
Since the discovery of single layer of Graphite, Graphene, a single layer of 
hexagonal carbon atoms, has attracted much attention and shown exciting 
specific properties. Graphene is a zero band gap semiconductor. Therefore 
band gap control is one of most important issue to apply for electronic 
device applications. In order to construct electronic devices with logic 
operation, both p- and n-type conductions and the control of the carrier 
density in an active channel are required. Doping with foreign atoms, such 
as N and B, has proven to be an effective way to modify the electronic 
properties of carbon related materials and extend their applications. In 
particular, nitrogen doping brings a carrier which could turn carbon 
nanotube into n-type semiconductors. It is also feasible to modify the 
electronic properties of Graphene. Although several doping methods have 
reported so far, process damages (defect generation) cause degradation of 
electronic properties.  

In this paper, we introduce ultra-low damage neutral beam system which 
consists of a plasma and process chambers that are separated by a carbon 
aperture. Charged species and ultra-violet photon from the plasma can be 
effectively eliminated by the aperture. As a result, only the neutral beam 
arrives the surface of the sample at the substrate in the process chamber.  

We used nitrogen gas for plasma generation and adopted multi-layer 
Graphene to investigate nitridation mechanism. Graphene multi-layer was 
irradiated by nitrogen neutral beam with controlled energy of 10 eV at room 
temperature. The surface modification was analyzed by x-ray photoelectron 
spectroscopy (XPS). XPS analysis indicated that the carbon atoms were 
substituted to nitrogen atom and atomic concentration of nitrogen reaches 
15 %. Additionally, bonding state of C and N was found to depend on 
neutral beam irradiation time. Thus beam energy controlled neutral beam 
can selective nitridation of Graphene. Furthermore the doping density is 
estimated by Raman spectroscopy and result in 1012 [cm2], which is enough 
to n-type doping of Graphene.  

5:00pm  2D+AS+EM+NS+SS-MoA10  Growth Mechanism of Metal 
Clusters on a Graphene/Ru(0001) Template, Shixuan Du, L.Z. Zhang, 
Chinese Academy of Sciences, W. Hofer, University of Liverpool, UK, H.-
J. Gao, Chinese Academy of Sciences 
Metal nano-clusters have attracted considerable interest because of the 
potential applications in catalysis and information storage. Due to the soft 
nature of epitaxial graphene and the lattice mismatch between graphene and 
metal substrates periodic moiré patterns can be formed. A graphene/metal 
template, moiré template, can be used to grow dispersed metal nano-clusters 
with controllable size and shape, or metal clusters with large size and metal 
layers. However, how intrinsic properties of metal atoms and the moiré 
template influence the selective adsorption and the growth mode of metal 
clusters is still open to debate. A general rule, predicting the morphology of 
metal nano-clusters on a G/metal surface, important to guide experimenters, 
is still missing. Using first-principles calculations combined with scanning 
tunneling microscopy experiments, we investigated the adsorption 
configurations, electronic structures and the corresponding growth 
mechanism of several transition metal (TM) atoms (Pt, Ru, Ir, Ti, Pd, Au, 

Ag, and Cu) on a graphene/Ru(0001) moiré template (G/Ru(0001)) at low 
coverage. We find that Pt, Ru, Ir, and Ti selectively adsorb on the fcc region 
of G/Ru(0001) and form ordered dispersed metal nano-clusters. This 
behavior is due to the unoccupied d orbital of the TM atoms and the strong 
sp3 hybridization of carbon atoms in the fcc region of G/Ru(0001). Pd, Au, 
Ag, and Cu form nonselective structures because of the fully occupied d 
orbital. This mechanism can be extended to metals on a graphene/Rh(111) 
template. By using Pt as an example, we provide a layer by layer growth 
path for Pt nano-clusters in the fcc region of the G/Ru(0001). The 
simulations agree well with the experimental observations. Moreover, they 
also provide guidance for the selection of suitable metal atoms to form 
ordered dispersed metal nano-clusters on similar templates. 
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