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2:20pm  2D+AS+EM+MI+MN+NS+TF-WeA1  Tuning Excitons in 
Two-Dimensional Semiconductors, Kirill Bolotin, Vanderbilt University 
 INVITED 
Monolayer molybdenum disulfide (MoS2) is a two-dimensional crystal 
comprising a single layer of molybdenum atoms sandwiched between two 
layers of sulfur atoms. Monolayer MoS2 differs from its celebrated all-
carbon cousin, graphene, by the presence of a direct band gap leading to 
robust light absorption and by strong electron-electron interactions leading 
to formation of rightly bound excitons. In this talk, we demonstrate that 
both electrical and optical properties of MoS2 can be widely tuned via 
external influences. 

In the first part of the talk, we study changes in the bandgap and phonon 
spectra in strained MoS2. We investigate the transition from direct to 
indirect band gap in MoS2 under uniaxial strain. The experimental 
signatures of this transition include strain-induced changes in the PL 
wavelength and intensity. 

Second, we examine the influence of the environment of MoS2 on its 
properties. We demonstrate substrate-induced scattering is suppressed in 
suspended MoS2 specimens. We use photocurrent spectroscopy to study 
excitons in pristine suspended MoS2. We observe band-edge and van Hove 
singularity excitons and estimate their binding energy. We study 
dissociation of these excitons and uncover the mechanism of their 
contribution to photoresponse of MoS2. 

3:00pm  2D+AS+EM+MI+MN+NS+TF-WeA3  Electron-Phonon 
Coupling and Photoluminescence in Single Layer Transition Metal 
Dichalcogenides, Neha Nayyar, V. Turkowski, D.T. Le, T.S. Rahman, 
University of Central Florida 
Single layer MoS2 and other transition metal dichalcogenides have been the 
subject of numerous investigations because of their unusual optical, 
electronic and transport properties. To understand and thereby tune their 
photoluminescent properties, we have analyzed the role of electron-phonon 
interactions. Density functional perturbation theory is used to calculate the 
dispersion of system phonons, while electron-phonon coupling is obtained 
using the Eliashberg approach. Time-dependent density-functional theory 
based calculations using the density-matrix approach is employed to study 
the exciton and trion excitations which are found to appear as peaks in the 
absorption spectrum in the visible range with binding energy ~0.5 – 1 eV 
and ~0.02-0.03 eV, correspondingly. The emission peak is found to also lie 
in the visible spectrum and is sensitive to the value of the electron-phonon 
coupling, which depends on the nature and extent of doping. The position of 
the spectral peaks may thus be manipulated by doping. Calculations of the 
self-energy and spectral functions of doped systems show excitations to 
have 10-100 fs lifetime, which makes the system interesting for ultrafast 
applications. Comparison will be made of these optical properties of several 
single layer dichalcogenides and contact will be made with available 
experimental data. Work supported in part by DOE Grant No. DOE-DE-
FG02-07ER46354 

3:20pm  2D+AS+EM+MI+MN+NS+TF-WeA4  Temperature 
Dependent Photoluminescent Spectroscopy of MoS2, Michael Watson, 
J.R. Simpson, Towson University & NIST, R. Yan, H. Xing, University of 
Notre Dame, S. Bertolazzi, J. Brivio, A. Kis, EPFL, Switzerland, A.R. Hight-
Walker, NIST 
We report temperature and power dependent photoluminescence (PL) of 
molybdenum disulphide (MoS2). Mechanical exfoliation of MoS2, from 
bulk provides single-layer flakes which are then transferred either to 
sapphire substrates or suspended over holes in Si/Si 3 N 4 . We measure 
temperature dependence from ≈ 100K to 400K and power dependence from 
≈ 6μW to ≈ 7mW using an Argon laser at 514.5nm and a HeNe laser at 
632.8 nm. The PL spectrum exhibits a main exitonic peak(A) at ≈ 1.87eV 
which consist of both neutral excitons and charged trions (A- or A+) [1]. 
The A exciton peak and the A- exciton peak redshift and broaden with 
increasing temperature and power. Along with the A peak, we observe a 
lower energy bound exciton (BE) that is likely related to defects. The BE,a 
broad peak centred at ≈ 1.7eV, linearly redshifts and narrows with 
increasing power. The power dependence of both the main and bound peak 
saturates above 0.5mW. Raman temperature and power dependence will 
also be discussed [2]. 

[1] KF. Mak et al. Nat. Mat 12,207(2013) 

[2] R.Yan and J.R.Simpson, S. Bertolazzi and J. Brivio, M. Watson, X.Wu 
and A. Kis, T.Luo, H.G.Xing, A.R. Hight Walker, ACS Nano 8,1 (2013) 

4:20pm  2D+AS+EM+MI+MN+NS+TF-WeA7  Effects of 
Dimensionality on the Raman and Photoluminescence Spectra of and 
TaSe2 and TaS2 Dichalcogenides, Danilo Romero, University of 
Maryland, College Park, M. Watson, J.R. Simpson, Towson University, H. 
Berger, Ecole Polytechnique Federale de Lausanne, Switzerland, A.R. Hight 
Walker, NIST 
We investigate the effects dimensionality on the electronic properties 
through the optical spectra of the transition-metal dichalcogenides 2H-
TaSe2 and 1T-TaSe2, and 1T-TaS2. In bulk, these materials exhibit 
electronic states from Mott insulator, commensurate and incommensurate 
charge-density phases, and superconducting ground state as function of 
temperature. We explore the evolution of these properties as the materials 
approach a few layers, achieved via mechanical exfoliation of bulk single-
crystals. Raman and photoluminescence spectroscopy of 2H-TaSe2 and 1T-
TaSe2, and 1T-TaS2, carried out over a wide-range of temperature, were 
used as a probe of the change of the electronic properties from the bulk to 
single-layer phases of the materials. Comparison of the phonon and 
excitonic transitions as a function of temperature and dimensionality will be 
presented. 

4:40pm  2D+AS+EM+MI+MN+NS+TF-WeA8  Few-Layer and 
Symmetry-Breaking Effects on the Electrical Properties of Ordered 
CF3Cl Phases on Graphene, Josue Morales-Cifuentes, T.L. Einstein, Y. 
Wang, J. Reutt-Robey, University of Maryland, College Park 
An effective potential mechanism for breaking the inherent sublattice 
symmetry of graphene has been studied using DFT calculations on 
hexagonal boron nitride.1 Electrical detection of CF3Cl phase transitions on 
graphene shows the existence of a commensurate ordered phase in which 
this can be tested.2 We study the electronic properties of similar phases 
varying coverage and orientation of CF3Cl with respect of the graphene 
substrate using VASP ver 5.3.3, with ab initio van der Waals density 
functionals (vdW-DF1, vdW-DF2).3 4 Consistent with a physisorbed phase, 
binding energies are calculated to be on the order of 280meV, and 
insensitive to coverage and orientation of the CF3Cl molecules. Charge 
transfer was calculated to be sensitive with coverage, but not orientation, 
which is qualitatively consistent with experiment. For low coverages, sub-
lattice symmetry breaking effects are responsible for gap openings in the 
order of 4meV, whereas for large coverages it is the formation of ordered 
overlayers that opens gaps of 15meV. Furthermore, in bilayer graphene at 
low coverage we estimate an enhanced gap of 20meV. 

[1] Gianluca Giovannetti et al. , PRB 76, 073103(2007) 

[2] Yilin Wang et al. , APL 103, 201606 (2013) 

[3] Jiri Klimes et al. , PRB 83, 195131 (2011) 

[4] Kyuho Lee et al. , PRB 82, 081101(R) (2010) 

5:00pm  2D+AS+EM+MI+MN+NS+TF-WeA9  Optical Anisotropies in 
Layered Nanomaterials, Jon Schuller, UC Santa Barbara INVITED 
In nanomaterials optical anisotropies reveal a fundamental relationship 
between structural and optical properties. In layered materials, optical 
anisotropies may result from in-plane and out-of-plane dipoles associated 
with intra- and inter-layer excitations respectively. In this talk, I describe a 
novel method wherein we resolve the orientation of luminescent excitons 
and isolate photoluminescence signatures from distinct intra- and inter-layer 
excitations, respectively. We compare photoluminescence anisotropies in 
materials with weak or strong interlayer coupling, MoS2 and the organic 
semiconductor PTCDA respectively. We demonstrate that 
photoluminescence from MoS2 mono-, bi- and trilayers originates solely 
from in-plane excitons, whereas PTCDA supports distinct in-plane and out-
of-plane exciton species with different spectra, dipole strengths and 
temporal dynamics. The insights provided by this work are important for 
understanding fundamental excitonic properties in layered nanomaterials 
and designing optical systems that efficiently excite and collectlight from 
exciton species with different orientations.  

5:40pm  2D+AS+EM+MI+MN+NS+TF-WeA11  Mechanical Properties 
of 2D-Materials, J.M. Gonzales, University of South Florida, R. Perriot, 
Los Alamos National Laboratory, Ivan Oleynik, University of South 
Florida 
Graphene and other two-dimensional (2D) materials possess extraordinary 
mechanical properties, which are currently being explored in various novel 
applications. Atomic force microscopy (AFM) nanoindentation experiments 
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on both pristine and polycrystalline samples of 2D materials, while being 
successful in measuring overall mechanical performance of graphene, 
require some theoretical input to extract the important mechanical 
properties. Large-scale atomistic molecular dynamics simulations are used 
to predict the mechanical properties of 2D materials, such as the elastic 
moduli, breaking strength, stress/strain distributions, and mechanisms of 
fracture under conditions of AFM nanoindentation experiments. Perfect, 
defective, and polycrystalline samples are investigated using large-scale 
molecular dynamics simulations with a screened environment-dependent 
bond order (SED-REBO) potential. The mechanisms of crack propagation 
in both perfect and defective samples will also be presented. 

6:00pm  2D+AS+EM+MI+MN+NS+TF-WeA12  Mechanical Control of 
Structural Phase Transitions in Two-Dimensional Mo- and W- 
Dichalcogenide Monolayers, Evan Reed, K.-A.N. Duerloo, Y. Li, Stanford 
University 
Mo- and W- dichalcogenide compounds have a two-dimensional monolayer 
form that differs from graphene in an important respect: it can potentially 
have more than one crystal structure. Some of these monolayers exhibit 
tantalizing hints of a poorly understood structural metal-to-insulator 
transition with the possibility of long metastable lifetimes. If controllable, 
such a transition could bring an exciting new application space to 
monolayer materials beyond graphene. Here we discover that mechanical 
deformations provide a route to switching the thermodynamic stability 
between a semiconducting and a metallic crystal structure in these 
monolayer materials. We employ density functional and hybrid Hartree-
Fock/density functional calculations including vibrational energy 
corrections to discover that single layer MoTe2 is an excellent candidate 
phase change material. We identify a range from 0.3% to 3% for the tensile 
strains required to transform MoTe2 under uniaxial conditions at room 
temperature. We elucidate the appropriate thermodynamic constraints for 
monolayers, which can differ from bulk materials. The potential for 
mechanical phase transitions is predicted for all six studied compounds. The 
potential application space ranges from catalysis to information storage and 
nanoscale electronics. 
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