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8:00am  2D+AS+BI+PS+SS-TuM1  Phase Engineering in 2D Transition 
Metal Dichalcogenides, Manish Chhowalla, Rutgers University INVITED 
Two-dimensional transition metal dichalcogenides (2D TMDs) — whose 
generalized formula is MX2, where M is a transition metal of groups 4–7 
and X is a chalcogen — exhibit versatile chemistry and consist of a family 
of over 40 compounds that range from complex metals to semiconductors to 
insulator. Complex metal TMDs assume the 1T phase where the transition 
metal atom coordination is octahedral. The 2H phase is stable in 
semiconducting TMDs where the coordination of metal atoms is trigonal 
prismatic. Unlike mechanical exfoliation and chemical vapor deposition, 
chemical exfoliation of semiconducting layered TMDs yields monolayered 
nanosheets with heterogeneous atomic structure consisting of metallic (1T) 
and semiconducting (2H) phases. Metal (1T phase) to semiconductor (2H 
phase) transition can be achieved via mild annealing of exfoliated materials. 
Semiconductor to metal transitions can be achieved via chemistry. The 1T 
phase in semiconducting TMDs has scarcely been studied but it deserves 
urgent attention as it exhibits promise as a hydrogen evolution catalyst and 
as contact electrode in electronic devices. We will describe these phase 
transitions in semiconducting TMDs and provide examples of how we have 
learned to exploit them for covalent functionalization, enhanced catalytic 
and electronic performance. 

8:40am  2D+AS+BI+PS+SS-TuM3  Transition Metal Nanoparticles on 
Single-Layer MoS2: Structural, Electronic and Catalytic Properties, 
Takat B. Rawal, D.T. Le, T.S. Rahman, University of Central Florida 
We will present results of density functional theory based calculations of 
the geometric and electronic structure of several types of sub-nanometer 
sized transition metal nanoparticles (TMNPs) on pristine and defect-laden 
single-layer MoS2. We will show that among the investigated TMNPs (Cu, 
Ag, Au), Cu nanoparticles bind strongest to pristine MoS2 while Au and Ag 
nanoparticles bind with similar, weaker strengths. The presence of the 
vacancy defect on MoS2 enhances significantly the binding strength of Cu 
nanoparticles, while it has very little effect on the binding strength of Au 
NPs. More interestingly, the amounts of charge transfer from TMNPs to 
MoS2 vary following the order of the bind energies of TMNPs on MoS2. 
Additionally, the shape of the nanoparticles also has an impact on the 
binding characteristics. Of particular interest is the role of the substrate on 
the catalytic properties of the TMNP and conversely that of the TMNP on 
the defect-laden MoS2 single layer. In this regard we will examine in detail 
the reactivity of the atoms at the TMNP/MoS2 interface in reactions such as 
CO oxidation and methanol decomposition and compare them to that of 
similar nanoparticles when supported on titania.  

Work supported in part by DOE Grant No. DE-FG02-07ER15842 

9:00am  2D+AS+BI+PS+SS-TuM4  How Fluorination Enhances 
Friction Forces for Graphene, Xin Liu, Q. Li, University of Pennsylvania, 
S.P. Kim, Brown University, V.B. Shenoy, University of Pennsylvania, P.E. 
Sheehan, J. Robinson, Naval Research Laboratory, R.W. Carpick, 
University of Pennsylvania 
The chemical functionalization of graphene can alter its electronic, 
chemical, mechanical, and tribological properties. Here we employ atomic 
force microscopy (AFM), Raman microscopy, and molecular dynamics 
(MD) simulations to show that friction can be fine-tuned by chemically 
modifying graphene. Although bulk fluorinated graphite has a very low 
surface energy, our experiments and simulations both show that friction 
between nanoscale tips and FG is up to 9 times higher than that for pristine 
graphene. The ability to resolve an ordered lattice in atomic stick-slip 
friction measurements also diminishes with greater fluorination, indicating 
that the fluorinated graphene is disordered. Our observation suggests that 
AFM friction measurements provide a sensitive local probe of the degree of 
fluorination of graphene. Motivated by MD simulations, we propose that 
the dramatic enhancement of friction results from increased corrugation of 
the interfacial potential due to the strong local charge concentrated at 
fluorine sites, consistent with the Prandtl-Tomlinson model. 

9:20am  2D+AS+BI+PS+SS-TuM5  Chemical, Structural and Electrical 
Modification of Graphene, Sandra Hernández, E.H. Lock, M. osofsky, S. 
Tsoi, Naval Research Laboratory, C. Junkermeier, Penn State University, R. 
Stine, Nova Research, J. Robinson, Naval Research Laboratory, A. Nath, 
George Mason University, V.D. Wheeler, R.L. Myers-Ward, J. Caldwell, 
C.R. Tamanaha, T. Reinecke, P.E. Sheehan, D.K. Gaskill, S.G. Walton, 
Naval Research Laboratory 
2D nanomaterials have been vigorously investigated due to their superlative 
mechanical, thermal, and electronic properties. Being composed entirely of 
surface atoms, they are incredibly amenable to surface modification thus 
providing the opportunity towards excellent control over their properties. 
Surface engineering of 2D materials composed of carbon materials, such as 
graphene, can be achieved by plasma modification. We will discuss our 
efforts in understanding the chemical, structural, and electrical properties of 
plasma functionalized graphene by introducing -oxygen, -fluorine, and -
nitrogen chemical moities, and discuss their impact on chemical reactivity, 
electrical transport, and enhanced sensing behavior. Demonstrating how 
precise nano-engineering of surface chemistry impacts contact engineering, 
biosensing and device based applications.  

This work is supported by the Naval Research Laboratory Base Program. 

9:40am  2D+AS+BI+PS+SS-TuM6  The Mechanochemistry of 
Chemically Modified Graphene, Jonathan Felts, S.C. Hernandez, A.J. 
Oyer, J. Robinson, S.G. Walton, P.E. Sheehan, Naval Research Laboratory 
Defining the optoelectronic properties of graphene through controlled 
chemical functionalization provides a route to fabricating a wide range of 
graphene based devices. In prior work, we showed that heat supplied by a 
scanning probe removed functional groups from chemically modified 
graphene (CMG) thereby restoring it to graphene [1]. Here we show that 
mechanical stress alone effectively removes functional groups. We 
measured the degree of surface functionalization by monitoring both normal 
load and friction between the sliding tip and a plasma processed CMG 
sheet. For oxygenated graphene, friction decayed exponentially with sliding 
distance, dropping to ~15% of the starting value. These measurements 
revealed an initial drop in friction that was independent of applied stress, 
suggesting the presence of an adsorbed water layer on the surface. More 
importantly, they reveal an Arrhenius-like relationship between contact 
stress and degree of surface reduction. The reduction in friction persisted, 
precluding the presence of the adsorbed contaminants as the source of the 
friction change. Conductive AFM and Raman measurements provide further 
evidence for chemical reduction. Conductive diamond AFM tips measure 
the current through the surface during the reduction process, revealing a 5x 
increase in conductivity corresponding to the friction force reduction. 
Additionally, Raman measurements on a 5 mm2 reduced area showed a 
relative increase in both the G and 2D peaks, consistent with a reduction in 
functionalization. These experiments enabled detailed comparison of 
tribochemical reactions without the complications of transfer films or the 
initial run-in of the film. They also enable experiments difficult by other 
means. For instance we could directly compare the mechanical barrier to 
functional group removal by monitoring friction while slowly ramping the 
applied stress between the tip and a graphene surface functionalized with 
either oxygen or fluorine groups. For oxygenated graphene, the contact 
stress at the maximum reduction rate was ~0.47 ± 0.14 GPa; for fluorinated 
graphene it was ~0.85 ± 0.27 GPa. Thus, by using the same tip and same 
supporting substrate we could directly compare the bond strengths between 
different functional groups and the graphene lattice. This work 
demonstrates the ability to measure and control the chemistry of single-
layer functionalized surfaces at the nanometer scale, and has wide 
application in tribochemical wear, mechanochemistry, and nanoelectronic 
device fabrication with chemically tuned optoelectronic properties. 

[1] Z. Wei, et al, Science 328, 1373-1376 (2010) 

11:00am  2D+AS+BI+PS+SS-TuM10  Fe-catalyzed Etching of 
Graphene, Few-Layer Graphene, and Graphite, Guangjun Cheng, A.R. 
Hight Walker, National Institute of Standards and Technology 
Mechanically exfoliating graphite onto a substrate provides a family of 
layered materials with adjustable thickness, including monolayer graphene, 
few-layer graphene (FLG), and graphite. In this work, we investigated the 
Fe-catalyzed etching of graphene, FLG, and graphite in forming gas (10% 
H2/90% N2) or N2 using low-voltage scanning electron microscopy and 
Raman spectroscopy. Fe thin films were deposited by sputtering onto 
mechanically exfoliated graphene, FLG, and graphite flakes on a Si/SiO2 
substrate. When the sample is rapidly annealed in either gas environment, 
particles are produced due to the dewetting of the Fe thin film and expected 
to catalyze the etching of graphene, FLG, and graphite. The combined 
microscopic and spectroscopic evidence reveals a thickness-dependent, 
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catalytic etching behavior in these two gas environments and provides 
insights into the catalytic mechanisms involving carbon hydrogenation and 
carbon dissolution.  

11:20am  2D+AS+BI+PS+SS-TuM11  Tunable Graphene/Si Schottky 
Diode Sensor: Before and After Functionalization for Wide Range of 
Molecular Sensing, MdAhsan Uddin, A. Singh, T. Sudarshan, M.V.S. 
Chandrashekhar, G. Koley, University of South Carolina 
Graphene/Semiconductor Schottky devices attracted significant research 
attention due to wide range of applications from transistor to IR detector [1-
2]. Such heterojunctions are also promising for sensing applications due to 
the molecular adsorption induced Schottky barrier height (SBH) change at 
the interface, affecting the junction current exponentially in reverse bias, 
which leads to ultrahigh sensitivity. Graphene/p-Si diode sensor [Device 
image, Raman spectra and I-V characteristics shown in fig. 1(a), (b) and (c)] 
has been developed with high bias-dependent sensitivity and low operating 
power. 

Performance enhancement has been demonstrated by fabricating graphene 
chemiresistor and diode sensor on the same chip. The diode sensor 
exhibited 13 times higher sensitivity for NO2 [Fig. 2(a)] and 3 times higher 
for NH3 [Fig. 2(b)] in ambient condition, while consuming ~500 times less 
power for same applied voltage. Sensing tunability is achieved by operating 
the device in reverse bias, tuning the graphene work function and hence the 
SBH by the applied bias. The sensitivity varied from 268 to 574% for NO2 
as the bias magnitude varied from -1 to -8V [Fig. 3(a)]. Optimized sensor 
design to detect particular analyte is also possible by careful selection of 
graphene/Si heterojunction SBH. For example, graphene/p-Si with larger 
SBH is better NO2 sensor while smaller SBH device has better NH3 
sensitivity. The sensing mechanism based on SBH change has been 
confirmed by capacitance-voltage measurements [Fig. 3(b)]. The SBH 
decreased by 0.23eV for NO2 exposure while increased by 0.16eV for NH3. 
Variation in sensitivity with NO2 and NH3 concentration has also been 
demonstrated (Fig. 4). 

Pd and Pt functionalization has been carried out to make the graphene/Si 
diode [Fig 5] sensitive to H2. Extrapolated SBH from the I-V 
characteristics, before and after few nm metal decoration, and H2 exposure 
showed initial SBH decrease after functionalization and subsequent increase 
in presence of H2, respectively [Fig. 6(a) and (b)]. Compared to graphene 
chemiresistor, the chemi-diode sensor offers more than one order of 
magnitude higher H2 sensitivity for both types of functionalization. 
Similarly, the reverse bias operation also enables low power consumption, 
tunable sensitivity and detection of H2 down to 1 ppm [Fig. 7(a)] in air 
which is close to the atmospheric background of 0.6 ppm [3]. Among the 
two metals, Pd-functionalization always exhibited better sensing response 
irrespective of the bias voltage [Fig. 7(b)]. Remarkably, for Pd-
functionalization, the sensor response showed absolute exponential change 
with varying H2 concentration ranging from 2 to 1000 ppm [Fig. 7(c)]. 

12:00pm  2D+AS+BI+PS+SS-TuM13  Dielectrics Layer Deposition on 
Graphene Surface by Functionalization with Polar Titanyl 
Phthalocyanine, Jun Hong Park, I.J. Kwak, K. Sardashti, A.C. Kummel, 
University of California at San Diego 
Several novel designs for beyond CMOS devices have emerged using two-
dimensional semiconductors. These devices require deposition of thin 
insulators on 2D semiconductors or between two sheets of 2D 
semiconductors. However, 2D semiconductors are nearly inert surfaces 
thereby making uniform nucleation of oxide growth challenging preventing 
scaling of the insulator thickness. A new technique has been developed to 
employ a monolayer of ordered metal phthalocyanines (MPc) on 2D 
semiconductors directly as a monolayer low-k dielectric or as a nucleation 
layer for growth of high-k insulators. This study demonstrates the molecular 
scale observation of formation of O-TiPc mono and bilayers on graphene 
with UHV scanning tunneling microscopy (STM). O-TiPc monolayers were 
deposited on HOPG surfaces by organic molecular beam epitaxy. After 
deposition, O-TiPc forms a monolayer with only few defects, and the 
crystal structure of monolayer has four-fold symmetry in a 1.4 x 1.4 nm 
grid. Observation of bright protrusions on each O-TiPc indicates that each 
O-TiPc in the monolayer is directed outward to vacuum. STS shows the 
band gap of the monolayer is 1.7 eV and the band gap of the bilayer is 2.3 
eV. The monolayer or bilayer can directly be employed for sub-nanometer 
insulators on 2D semiconductors at low bias. Multiple cycles of TMA and 
water were dosed onto O-TiPc/HOPG to investigate nucleation of Al2O3 on 
the O-TiPc layers. The first cycle of TMA was observed to chemisorb on a 
1.4 x 1.4 nm grid on the TiOPc monolayer. After exposure O-TiPc 
monolayer to 5 cycles ALD pulse (tri-methyl-aluminum (TMA)+H2O), 
insulating aluminum oxide was deposited uniformly on O-TiPc/HOPG. 
After formation of Al2O3 on O-TiPc/HOPG, the band gap of surface 
increases from 1.7 eV to 2.7 eV, while the conductance decreased. As 
shown in XPS spectra, the quality of Al2O3 can be improved by post 
annealing, consisting with transition of chemical states in O 1s peak and Al 

2p. The chemical shifts of O and Al indicate that post annealing converts 
remained the Al-OH to Al2O3. Consequently, O-TiPc can not only act as a 
low-K dielectric but also induce high density ordered nucleation of ALD on 
central ion of O-TiPc for high-k dielectric growth. 
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