AVS 61st International Symposium & Exhibition
    Thin Film Tuesday Sessions
       Session TF+PS-TuM

Paper TF+PS-TuM13
Atomic Layer Deposition of Tin Doped Titanium Oxide on Type-V Titanium Implant Surface for Enhanced Photoactivated Antibacterial Property

Tuesday, November 11, 2014, 12:00 pm, Room 307

Session: ALD for Emerging Applications
Presenter: Christos Takoudis, University of Illinois at Chicago
Authors: S.K. Selvaraj, University of Illinois at Chicago
A. Butt, University of Illinois at Chicago
C.G. Takoudis, University of Illinois at Chicago
Correspondent: Click to Email

Atomic layer deposition (ALD) is used for the first time to modify type-V titanium (Ti-6Al-4V) surface, a commonly used dental and orthopedic implant material.1 ALD of titanium oxide and tin doped titanium oxide thin films were deposited on Ti-6Al-4V disks to enhance photoactivated antibacterial property of its surface. Tetrakis(diethylamino)titanium (TDEAT) kept at 65 oC and tin(II)acetylacetonate (Sn(acac)2) kept at 70 oC were used as titanium and tin sources, respectively. Custom built hot-wall flow-type ALD reactor was used to deposit antibacterial thin films at 200 oC substrate temperature and 0.5 Torr.2,3 Different composition of tin doping was achieved by changing the number of tin oxide ALD cycles. X-ray photoelectron spectroscopy was used to study the composition and purity of the thin films. Films were found to have titanium, tin, oxygen and trace amount of carbon. Excellent composition tunability of the ALD process was achieved. The resultant films were studied for photoactivated antibacterial property using a gram negative Escherichia coli bacterial strain ATCC 8739. The ALD coated Ti-6Al-4V disks were immersed in bacterial solution and illuminated with UV light for 3 min. Irradiated bacterial samples were plated on agar plate and incubated for 12 hours at 37 oC. Two fold increase in antibacterial property was achieved on ALD TiO2 coated disks compared to uncoated (control) disks. Tin doping further increased the activity by about two fold. Any increase in tin composition beyond 15 atom % was found to have no effect on antibacterial activity.

References

1 Gallardo-Moreno, A. M., Pacha-Olivenza, M. A., Saldana, L., Perez-Giraldo, C., Bruque, J. M., Vilaboa, N., and Gonzalez-Martin, M. L., In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation, Acta Biomaterialia2009, 5 (1), 181.

2 Selvaraj, S. K., Jursich, G., and Takoudis, C. G., Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor, Review of Scientific Instruments2013, 84 (9), 095109.

3 Selvaraj, S. K., Feinerman, A., and Takoudis, C. G., Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone, Journal of Vacuum Science & Technology A2014, 32 (1), 01A112.