AVS 61st International Symposium & Exhibition
    Fundamentals & Biological, Energy and Environmental Applications of Quartz Crystal Microbalance Focus Topic Thursday Sessions
       Session QC+AS+BI+MN-ThA

Paper QC+AS+BI+MN-ThA3
Investigation of Interaction between a Monoclonal Antibody and Solid Surfaces via Multiple Surface Analytical Techniques

Thursday, November 13, 2014, 3:00 pm, Room 317

Session: Applications of QCM
Presenter: Xia Dong, Eli Lilly and Company
Authors: X. Dong, Eli Lilly and Company
C.A.J. Kemp, Eli Lilly and Company
Z. Xiao, Eli Lilly and Company
Correspondent: Click to Email

The interaction between proteins and surfaces is an important topic in the field of biomaterials. With the development of monoclonal antibody products, there is increasing interest in understanding the nature of the interactions between antibodies and the solid surfaces they contact during manufacturing processes and storage. In this study, a monoclonal antibody was introduced to quartz crystal microbalance (QCM) substrates coated with gold, stainless steel and silicon carbide. The samples were characterized by multiple surface analytical techniques, including TOF-SIMS and XPS. The preliminary XPS results suggest that the protein adsorbed at higher concentration on gold than on stainless steel and silicon carbide, while nitrogen concentration detected on stainless steel is slightly higher than on silicon carbide. This is generally consistent with the QCM results. TOF-SIMS spectra also suggest that the interaction between the antibody and three substrates is not the same. The fragmentation patterns detected in the TOF-SIMS spectra obtained from silicon carbide and stainless steel are similar to each other, but they are different from those detected on gold. The interaction between the antibody and stainless steel coupons will be further studied to understand the influence of surface morphology.