AVS 61st International Symposium & Exhibition
    Manufacturing Science and Technology Thursday Sessions
       Session MS+PS+TF-ThM

Invited Paper MS+PS+TF-ThM12
NSF Scalable Nanomanufacturing (SNM) Program

Thursday, November 13, 2014, 11:40 am, Room 302

Session: Processes for Mesoscale Structure on Paper and Textiles 
Presenter: Khershed P. Cooper,
Correspondent: Click to Email

Abstract: Nanomanufacturing involves the fabrication of nano-scale building-blocks (nanomaterials, nanostructures), their assembly into higher-order structures such as nanodevices and nanosystems, and the integration of these into larger scale structures and systems such that both heterogeneity and complexity are possible with manipulation and control at nano-scale. In 2010, following a review of the NNI, PCAST recommended greater emphasis be put on commercialization of nanotechnologies by doubling Federal Government investment in nanomanufacturing R&D. In 2011, the inter-Agency NNI Signature Initiative (NSI) in Sustainable Nanomanufacturing was announced. In response to the NSI, the NSF Scalable Nanomanufacturing (SNM) Program was launched. SNM’s emphasis is on research to overcome the key scientific and technological barriers that prevent the production of useful nanomaterials, nanostructures, devices and systems at an industrially relevant scale, reliably, and at low cost and within environmental, health and safety guidelines. The SNM program’s objective is to address challenges presented at the various stages of the nanomanufacturing value chain of nano-scale building-blocks to nano-enabled products. It sponsors fundamental scientific research in well-defined technical areas that are strongly justified as approaches to overcome critical barriers to scale-up and integration. It seeks discovery of scalable processes and methods for large-area or continuous manufacturing at the nano-scale. It encourages the study of design principles for production systems leading to nanomanufacturing platforms, identification of metrology, instrumentation, and standards, and development of methodologies needed for process control and assessing quality and yield. SNM encourages an inter-disciplinary approach, industry collaboration and integration of research and education. SNM projects are studying a variety of building-blocks—CNT, graphene, membranes, BCPs, DNA, nanowires, nanofibers, QDs, etc., a variety of top-down and bottom-up processes—thermal, vapor-based, solution-based, lithography, patterning, bio-inspired, etc., targeting applications across the board—energy, environmental, electronics, sensors, structural, etc. Many projects are investigating roll-to-roll processing systems, some are studying in-line metrology and quality control. Moving ahead, SNM seeks to explore new research opportunities in processing (hierarchical nanomanufacturing, cyber-enabled nanomanufacturing, etc.), in materials (graphene, MoS2, etc.), in devices (plasmonics, ultrafine vias, etc.), and in manufacturing platforms (3D printing, bio-enabled assembly, etc.). SNM encourages an inter-disciplinary approach involving the disciplines of engineering, physical sciences and mathematics. The ultimate goal is to create a knowledge base for the reliable production of nano-enabled systems and products.