AVS 61st International Symposium & Exhibition
    Manufacturing Science and Technology Thursday Sessions
       Session MS+PS+TF-ThA

Invited Paper MS+PS+TF-ThA6
Direct and Self-Assembly of Nanocellulose Cleaved from Fiber Cell Walls and Integration in Device Manufacture

Thursday, November 13, 2014, 4:00 pm, Room 302

Session: Functionalization  of Paper and Textiles & Their Applications
Presenter: Orlando Rojas, North Carolina State University
Correspondent: Click to Email

We introduce our work related to the application of surface and colloid science in the development of cellulose nanomaterials. These efforts take advantage of the process by which nature assembles fibers in a highly hierarchical structure encompassing a wide range of sizes, from the nano to the meter scales. A number of materials cleaved from the cell wall have been the subject of intensive research, including, nanofibrillar cellulose and cellulose nanocrystals, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of cellulose fibers. Interest in nanocellulose originates from its appealing intrinsic properties: nanoscale dimensions, high surface area, unique morphology, low density, chirality and mechanical strength. Directing their assembly back to different hierarchical structures is a quest that can yield useful results in many revolutionary applications. As such, we will discuss the use of non-specific forces to create ultrathin films of nanocellulose at the air-solid interface for applications in nanocoatings, sensors, etc. Assemblies at other interfaces will be introduced as means to produce Pickering emulsions. Methods common in biophysics and employed to control the packing density of nanocellulose at the air-liquid and air-solid interfaces will be presented. A convective assembly setup assisted by shear and electric fields will be discussed as a suitable method to produce highly ordered structures. Concepts related to piezoelectric cellulose nanocrystal films, organic-inorganic hybrid materials with magnetic and other properties. Overall, the prospects of such novel materials will be explained in light of the unique properties of cellulose and its nanostructured assemblies.