AVS 61st International Symposium & Exhibition
    2D Materials Focus Topic Tuesday Sessions
       Session 2D+AS+HI+MC+NS+PS+SP+SS-TuA

Invited Paper 2D+AS+HI+MC+NS+PS+SP+SS-TuA1
Layer-Dependent Electronic and Physical Structure of 2D van der Waals Crystals

Tuesday, November 11, 2014, 2:20 pm, Room 310

Session: 2D Materials Characterization including Microscopy and Spectroscopy 
Presenter: Richard Osgood, Columbia University
Correspondent: Click to Email

Because of their weak Van der Waals interlayer bonding transition-metal dichalcogenide (TMDC) semiconductors can be fabricated into atomically thin two-dimensional (2D) crystals with substantial ~ 1-2 eV bandgaps. As one example, monolayer MoS2 consists of a single layer of Mo atoms sandwiched between two layers of S atoms in a trigonal prismatic structure. The TMDC 2D system has attracted great interest because of its distinctive electronic and optical properties, such as (i) a transition from indirect-to-direct band gap in going from the multilayer to monolayer crystal due to a missing interlayer interaction in monolayer form and (ii) strong spin-orbit-coupling-induced split valence bands, i.e. 100’s of meV, due to broken inversion symmetry, which makes TMDCs interesting for spin-physics physics and devices. Both properties have been predicted with density functional theory (DFT) calculations and indirectly demonstrated using photoluminescence and Raman spectroscopy.

Recently we have made a series of direct observations of the thickness-dependent electronic-band and crystal structure of TMDCs of both exfoliated and CVD grown sample. Because of the relatively modest sample sizes we have used micrometer-scale, angle-resolved photo-emission spectroscopy (micro-ARPES) of both the exfoliated and chemical-vapor-deposition-grown crystals; these measurements provide direct evidence for the shifting of the valence band maximum from gamma bar (Brillouin zone center) to kappa bar (Brillouin zone corner), as the sample thickness decreases from bulk to monolayer. Our initial results were with MoS2 and are described in a preliminary way in Refs 1 and 2. Our TMDC experimental results are compared with rigorous DFT calculations of both the bands and the UV transitions matrix elements. The results show an evolution in band structure, which is consistent with an indirect-to-direct bandgap transition in going from few-layer to monolayer TMDC and can be attributed to changes in quantum confinement as the number of layer decreases. Our microARPES and, subsequently, higher resolution nanospectroscopy data provide clear measurements of the hole effective mass, the strain present in the monolayer crystal films, and the valence-band spin-orbit splitting. Our results explain the low hole mobility of monolayer MoS2 compared to thicker MoS2 and show clearly the strong orbit split energies. Our results, using nanoLEED and LEEM also provide insight into the structure and defects in monolayer films. Experiments using K-doping of single-crystal samples and resulting level shifts are also described.

1. W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D.l A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, R. M. Osgood, Jr., “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy.” Phys. Rev. Lett. 111, 106801 (2013)


2. Po-Chun Yeh, Wencan Jin, Nader Zaki, Datong Zhang, Jerzy T. Sadowski, Abdullah Al-Mahboob, Arend M. van der Zande, Daniel A. Chenet, Jerry I. Dadap, Irving P. Herman, Peter Sutter, James Hone, and Richard M. Osgood, Jr., “Probing substrate-dependent long-range surface structure of single-layer and multilayer MoS2 by low-energy electron microscopy and microprobe diffraction,” Phys. Rev. B 89, 155408 (2014)