AVS 60th International Symposium and Exhibition | |
Surface Science | Tuesday Sessions |
Session SS-TuP |
Session: | Surface Science Poster Session |
Presenter: | T. Nakajima, Kogakuin University, Japan |
Authors: | T. Nakajima, Kogakuin University, Japan I. Takano, Kogakuin University, Japan |
Correspondent: | Click to Email |
Characteristics based on photo-inducement of TiO2 have attracted various interests in many fields. TiO2 has been known as one of a promising photocatalyst and is already used in various practical applications, such as the degradation of environmental pollutants and the self-cleaning of glasses. Furthermore, the most important characteristic as a photocatalyst of TiO2 is well known that photo-excited state is very stable and does not cause self-decomposition. Therefore, the electrolysis of water is performed under ultra-violet (UV) light irradiation to TiO2. However UV energy accounts for only a small fraction (~5%) of the sun’s energy compared to the visible region (45%).
In this study, to improve the photo-functional property of TiO2 the double layer films were fabricated by the constitution of the TiO2 layer of an n-type semiconductor and the Cu2O layer of a p-type semiconductor. Each arrangement of the film with TiO2/Cu2O was also investigated by optical permeability. Furthermore, to prevent diffusion of Cu from the Cu2O layer to the TiO2 layer, the TiN layer was inserted between the TiO2 layer and the Cu2O layer. As the following study, this Cu2O layer was replaced to the Ag2O layer. Those layers were fabricated by reactive magnetron sputtering. Composition and microstructure of these films were investigated by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. Chromatic change of a methylene blue solution was applied for the photocatalytic evaluation. Light irradiation to the sample in a methylene blue solution was carried out using a commercial sterilizing lamp as ultraviolet light and an artificial sun lamp as visible light. Transmittance of a methylene blue solution was measured by a spectrophotometer after irradiation for 6 hours by each lamp.
The XRD pattern of the TiO2/Cu2O thin film showed the strong peak of the anatase-rutile TiO2 from an upper layer and the weak peak of Cu2O from a lower layer. The suitable photocatalytic effect was obtained by the constitution of TiO2 with 300 nm and Cu2O with 200 nm in thickness, when the photocatalytic effect showed about 31 % under an artificial sun lamp and about 90 % under a sterilization lamp. In the case of the TiO2/TiN/Cu2O film it was estimated that the diffusion of Cu atoms was almost prevented by inserting TiN from the XRD pattern, when the photocatalytic effect showed about 39 % under an artificial sun lamp and about 89 % under a sterilization lamp.