AVS 60th International Symposium and Exhibition | |
Surface Science | Monday Sessions |
Session SS-MoA |
Session: | Metal Oxides: Reactivity and Catalysis |
Presenter: | D.R. Mullins, Oak Ridge National Laboratory |
Authors: | D.R. Mullins, Oak Ridge National Laboratory P.M. Albrecht, Oak Ridge National Laboratory |
Correspondent: | Click to Email |
Resonant photoemission excited at the Ce NIV,V–edge was used to study electron transfer from molecular adsorbates to the Ce cation on fully oxidized CeO2(100). Two features near the top of the valence band in CeO2 are extremely sensitive to the oxidation state of the Ce cation. The O 2p feature at a binding energy of 4 eV is proportional to the Ce4+ content in the surface. The Ce 4f peak at a binding energy of 1.5 eV is proportional to the Ce3+ content. The ratio of these two peaks at their respective resonance maxima provides a measure of the Ce3+/Ce4+ content. This ratio is extremely sensitive because the Ce 4f feature rises from a flat, low count background in fully oxidized CeO2 to a peak with thousands of counts at even modest levels of Ce reduction. The kinetic energy of the valence electrons at resonance is ca. 120 eV which places them near the minimum for the electron mean free path and therefore provides excellent surface sensitivity.
A variety of molecules were adsorbed on CeO2(100) at 190 K. CeO2 is a reducible oxide and removal of O from the surface will result in a reduction of Ce4+ to Ce3+. At 190 K none of the molecules studied resulted in desorption from the surface and therefore reduction did not result from the removal of O but from charge transfer from the adsorbate to the Ce. At elevated temperatures products such as water and CO2 were observed that clearly resulted in reduction of the Ce due to O removal.
Methanol and water undergo similar adsorption processes by breaking an O-H bond, depositing H on a surface O anion and adsorbing R-O- on the Ce cations. For methanol the methoxy adsorbate produced ca. 10% Ce3+ following adsorption whereas the hydroxyl adsorbate resulting from water exposure produced a negligible change in the Ce3+ content. This suggests that the C in the alcohol is partially oxidized following adsorption whereas there is no net transfer of charge from the H and O in the water to the Ce.
Acetaldehyde does act as a Bronsted acid by breaking an O-H bond yet it also produces a 10% reduction of the Ce. This may result from a partial oxidation of the C in the dioxy / η2 adsorption state and also from an oxidation of a small amount of the acetaldehyde to acetate. Pyridine, a classic probe of acid sites through the lone-pair electrons on the N, results in no change in the Ce3+ content. N 1s XPS and C k-edge NEXAFS suggest that the pyridine may not bond to the surface through the N atom.
Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy.