This talk will present (i) recent developments of stimuli responsive surfaces that exhibit dynamic structure on lateral length scales of the order of 10 microns and below, (ii) a prospectus for the formation of multifunctional bioactive surfaces based on such dynamic micro- and nanostructured materials, and (iii) results from study of bioadhesion and biorecognition on these surfaces. Stimuli responsive polymer surfaces include patterned polymer brushes and elastomers; biological systems of interest include protein solutions, adherent mammalian cell lines, as well as marine and infectious bacteria. Our previous studies have demonstrated that stimuli responsive polymers can be used to control the adhesion of such systems and, in this presentation, we will provide our latest advancements in this line of study, as regards to both molecular and cellular biointerfacial phenomena. Methods for preparing dynamic micro- and nanopatterns of stimuli responsive polymers will be presented, along with characterization of their structure, dynamic behavior and bioadhesion resistant character.