AVS 60th International Symposium and Exhibition
    Biomaterial Interfaces Wednesday Sessions
       Session BI+AI+AS+BA+IA+NL+NS+SP-WeA

Paper BI+AI+AS+BA+IA+NL+NS+SP-WeA10
AFM of Supported Lipid Bilayers: From Critical Point Behaviour to Actin Polymerization

Wednesday, October 30, 2013, 5:00 pm, Room 201 B

Session: Characterization of Biointerfaces
Presenter: G.R. Heath, University of Leeds, UK
Authors: G.R. Heath, University of Leeds, UK
S.D. Connell, University of Leeds, UK
S.D. Evans, University of Leeds, UK
Correspondent: Click to Email

In this study we create supported lipid model membranes which display phase separation into liquid-ordered and liquid disordered domains and use atomic force microscopy (AFM) to observe critical phenomena and protein interactions with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L d –L o region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T c ) and characterized using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. The region of critically fluctuating 10–100 nm nanodomains has been found to extend a considerable distance above T c to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

Ponticulin is a 17KDa integral membrane protein with multiple membrane spanning beta strands and glycosylphosphatidylinositol (GPI) lipid anchor at its C-terminus. Ponticulin has been shown to be the major high affinity link between the plasma membrane and the cortial actin network in D. discoideum (Wuestehube and luna, 1987; Chia et al., 1991). This protien in thought to reside in cholesterol-rich lipid microdomains (‘lipid rafts’) with the transmembrane domain apparently lying outside the lipid raft with the raft localization being dependant upon the GPI anchor at the C-terminus of the protein. We test the hypothesis of localization and show for the first signs of GPI-anchored membranes proteins preferentially locating to boundaries between the lo and ld phase. This may provide a potential mechanism by which the cytoskeleton can influence lipid organization.

Cationic lipids have been previously shown to adsorb actin from a non polymerizing solution, induce its polymerization, and form a 2D network of actin filaments, in conditions that forbid bulk polymerization. We show this phenomenon on supported lipid bilayers using high resolution AFM and QCM-D, investigating various factors such pH, charge concentration and lipid mobility which affect the actin structures formed. We then go on to mathematically model this process to show 2 different polymerization mechanisms depending on the lipid diffusion.