Tuesday Afternoon, November 1, 2011

Vacuum Technology Division Room: 111 - Session VT+MN+NS+SS+AS-TuA

Surface Science for Future Electronic Materials and Accelerator Applications Moderator: M. Wüest, INFICON Ltd, Liechtenstein

2:00pm VT+MN+NS+SS+AS-TuA1 New UHV Low Temperature Scanning Probe Microscopy Facility for the Study of Future Electronic Materials, J.A. Stroscio, National Institute of Standards and Technology INVITED

Since the beginning of the last century new frontiers in physics have emerged when advances in instrumentation achieved lower experimental operating temperatures. Notable examples include the discovery of superconductivity and the integer and fractional quantum Hall effects. New experimental techniques are continually adapted in order to meet new experimental challenges. A case in point is scanning tunneling microscopy (STM) which has seen a wealth of new measurements emerge as cryogenic STM instruments have been developed in the last two decades. In this talk I describe the design, development and performance of a scanning probe microscopy facility operating at a base temperature of 10 mK in magnetic fields up to 15 T [1]. The STM system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers used for sample and probe tip preparation. Results from current measurements on graphene and topological insulators will be described.

[1] *A 10 mK Scanning Probe Microscopy Facility*, Y. J. Song, A. F. Otte, V. Shvarts, Z. Zhao, Y. Kuk, S. R. Blankenship, A. Band, F. M. Hess, and J. A. Stroscio, Rev. Sci. Instrum. **81**, 121101 (2010).

2:40pm VT+MN+NS+SS+AS-TuA3 Contact Resistance of RF MEMS at a Randomly Rough Surface in the Presence and Absence of Adsorbed Organic Monolayers, D. Berman, J. Krim, M.J. Walker, North Carolina State University

Understanding of current flowing through the asperities is interesting for many applications: in RFMEMS, Molecular electronics, Nanotube tunneling etc.

Previous results [2] suggest that the films are displaced from the contacts themselves, but remain present in nearby regions. The increase in resistance is associated with elimination of vacuum electrical tunneling currents in those regions. This raises the question of the relative proportions of contact resistance (Rc) and effective tunneling resistance (Rt).

Measurements on the gold on gold contacts adhered in the closed position, where the contamination film cannot possibly be placed inside the contacts are reported, to investigate vacuum tunneling current contributions to the total current at the contact. Electrical Contact Resistance measurements are reported for RF micro-electromechanical switches with Au/Au and Au/RuO2 contacts, situated within an ultrahigh vacuum system equipped with in situ oxygen plasma cleaning capabilities. Fused Au/Au switch resistance increases by 3-5% (which corresponds to 20W tunneling resistance in parallel) after adding pentane to the switch environment. Moreover, the results are repeated with a different substrate (Ruthenium rather than Au), known for higher resistance, to change the resistance values with almost the same work function. If this is tunneling, the same effective tunneling resistance is expected, because tunneling depends on the work functions of the tip and substrate, which are close for gold and ruthenium oxide. In addition, the results are investigated for two different adsorbates, pentane and dodecane. Measurements have been recorded as the function of film coverage and the same tunneling resistance impact is observed. This is consistent with elimination of vacuum tunneling when adsorbed films are present.

Theoretical analysis of two possible mechanisms of the impact of molecular uptake is performed to interpret the experimental results: a) parallel connection of contact resistance and effective tunneling resistance before molecular adsorption, followed by molecules blocking the tunneling current; b) in series connection of contact resistance and pentane layer after adsorption. The data are more consistent with model a).

This work was supported by US National Science Foundation, AFOSR MURI and DARPA. We are grateful to C. Nordquist at Sandia National Lab and J. Hammond at RF Micro Devices for providing the experimental switches.

[1] D. Berman, M. Walker, C. Nordquist, J. Krim, in preparation for Journal of Applied Physics

[2] M. Walker, C. Nordquist, J. Krim, in preparation for Tribology Letters...

3:00pm VT+MN+NS+SS+AS-TuA4 Surface Issues for Solid Niobium SRF Accelerator Cavities, *M. Kelley*, College of William and Mary

The world-wide physics community looks forward to a slate of accelerator projects of unprecedented magnitude and diversity. Certainly its sheer size makes the International Linear Collider the most visible to the public eye, with 16,000 solid niobium cavities performing at historically high gradient, and built (and operated) for historically low unit cost. Net performance makes superconducting radiofrequency (SRF) technology the approach of choice.

Solid niobium is the material most widely used for construction of SRF cavities because it has the highest critical transition temperature ($T_c = 9.2$ K) of the pure metals, sufficiently high critical magnetic field ($H_c > 2$ k Oe) for SRF applications, and metallurgical properties adequate for fabrication and service load. Studies of the SRF performance of niobium cavities began to be reported more than 30 years ago and continue now with the application of improved experimental techniques. Niobium metal superconductivity is a nanoscale, near-surface phenomenon because of the shallow RF penetration. Considerable evidence indicates that cavity interior surface chemistry and topography strongly impact SRF accelerator performance, motivating investigation of how they are affected by post-fabrication treatments.

Current status and prospects are discussed with respect to accelerator needs and opportunities.

4:00pm VT+MN+NS+SS+AS-TuA7 Examples of Surface Related R&D on Nb Samples and SRF Cavities for Particle Accelerators at JLab, *A.T. Wu*, Thomas Jefferson National Accelerator Facility

This contribution will review some examples of surface related R&D on small and flat niobium (Nb) samples and single cell Nb superconducting radio frequency (SRF) cavities done at Jefferson Lab in the past few years. Most of the surface measurements were performed via the experimetal systems available in the surface science lab that was set up¹ at JLab to study the various problems on the Nb surfaces in the SRF field.

The first topic is about a new Nb surface polsihed technique called buffered electropolishing (BEP) that was developed at $JLab^2$. This technique can produce the smoothest surface finish ever reported in the literature³. It was also demonstrated that under a suitable condition, a Nb removal rate higher than 10 µm/min could be realized. Efforts have been made to try to understand the polishing mechanism through experiments with a well defined experimental geometry on small flat Nb samples. A unique versatile vertical polishing system was constructed to perform BEP on Nb single cell cavities. Small flat samples, Nb dumbbells and Nb single cell cavities were also studied and treated at CEA Saclay in France and Peking Universty in China and the cavities were RF tested at JLab. Experimental results will be analyzed and summarized. It is showed that BEP is a very promising cadidate for the next generation surface polishing technique for Nb SRF cavites.

A second topic will deal with a new Nb surface cleaning technique employed gas cluster ion beam (GCIB)⁴. This is a result of collaboration with Epion Corporation, Fermi Lab, and Argonne Lab. Beams of Ar, O_2 , N_2 , and N_3 clusters with accelerating voltages up to 35 kV were employed in this technique to bombar on Nb surfaces. The treated surfaces of Nb flat samples were examined by sevral surface experimental systems such as SEM, EDX, AFM, SIMS, and 3-D profilometer. The experiments revealed that GCIB technique could not only modify surface morphology of Nb, but also change the surface oxide layer structure of Nb and reduce the number of field emission sites on the surface dramatically. Computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics was eenployed to help understand the experimental results. A system was set-up at Epion Corporation to do treatments on Nb single cell cavities and then RF-tested at JLab. The experimental results will be summarized and the perspective of this technique for real appliactions is discussed.

Finally, I will show two typical examples of surface studies of Nb using a high resultion transmission electron microscope⁵ and a home-made scanning field emission microscope⁶ respectively.

4:20pm VT+MN+NS+SS+AS-TuA8 Early Stages of Nb Growth on Cu for SRF Accelerator Applications, C. Clavero, The College of William and Mary, N.P. Guisinger, Argonne National Laboratory, R.A. Lukaszew, The College of William and Mary

Among the large range of possible applications for superconducting Nb thin films, coatings for superconducting radio-frequency (SRF) cavities in linear accelerators have greatly aroused the interest of researchers in the last

years[1]. Superconducting thin films and multilayer coatings are expected to increase further the maximum field gradients that SRF cavities can withstand, pushing them above 100 MeV/m [2]. In this regard, Nb coated Cu cavities have been proposed as a prototypical system for this purpose since they combine the better thermal stability of Cu due to its much higher thermal conductivity and the superconducting properties of Nb thin films [3]. Nevertheless, it is well know that structural dislocations and localized surface resistive defects on the thin films have a dramatically negative influence on their superconducting properties and resonator quality. Indeed, the quality of the films is strongly conditioned by the growth mode bellow the single atomic layer coverage at the very early stages of growth, and thus special attention needs to be devoted to this range. Here we present a complete study on the early stages of growth of Nb on Cu(111). Different growth and annealing temperatures ranging from room temperature (RT) to 600 °C were used in order to investigate the characteristic growth mode of Nb in the sub-monoatomic coverage range. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to investigate morphology and chemical composition of the surfaces with atomic resolution. Growth of sub-monolayer coverages at RT leads to amorphous Nb islands with 1 and 2 AL heights. Annealing at 350 °C gives rise to crystallization of the islands pseudomorphically with the substrate, i.e. Nb(111). Further annealing at 600 °C promotes interdiffusion of Nb atoms into the Cu substrate and alloying of the islands. Growth of higher coverages above 1 AL at 350 °C reveals preferential Volmer-Weber growth mode.

1. H. Padamsee, Annual Review of Nuclear and Particle Science , 635 (1993).

2. A. Gurevich, Applied Physics Letters (1), 012511 (2006).

3. C. Benvenuti, S. Calatroni, I. E. Campisi, P. Darriulat, M. A. Peck, R. Russo and A. M. Valente, Physica C: Superconductivity (3-4), 153-188 (1999).

4:40pm VT+MN+NS+SS+AS-TuA9 Epitaxial Niobium Thin Films for Accelerator Cavities, W.M. Roach, D. Beringer, C. Clavero, College of William and Mary, C. Reece, Thomas Jefferson National Accelerator Facility, R.A. Lukaszew, College of William and Mary

The currently proven superconducting radio frequency (SRF) technology used in linear accelerators is based on bulk niobium cavities. Since this has a high cost and these cavities are approaching the maximum field gradients that they can withstand [1], development of a suitable, reliable, cost effective alternative to bulk niobium SRF cavities is needed. Attempts have been made to replace bulk niobium cavities with niobium-coated copper cavities since the thermal conductivity of a suitable base material such as copper is better than bulk niobium [2]. Coating niobium on SRF cavities is a promising but also challenging path, since there are several difficulties associated with various thin film deposition techniques and a lack of systematic studies pertinent to niobium thin film nucleation and growth leading to surfaces of greatest benefit.

Our systematic studies show that the transport properties, in particular the residual resistance ratio (RRR), are improved when niobium is epitaxially grown on crystalline ceramic substrates such as MgO and Al2O3, compared to niobium grown on (001) copper templates. Since grain boundaries are typically one of the main obstacles to superconducting transport, we show how the increased number of crystallographic domains that can occur during epitaxial niobium growth onto copper surfaces leading to higher density of grain boundaries can explain our results. We will discuss a route to improved transport properties while maintaining thermal efficiency by using alternative seed-layers grown on copper templates that can limit increased grain boundary density. We will show our correlated studies of microstructure and surface morphology (RHEED and AFM) and the resulting transport/magnetic properties (four point probe and SQUID magnetometry) illustrating possible mechanisms to improve SRF cavity performance of such niobium films.

This work is funded by HDTRA1-10-1-0072 from the Defense Threat Reduction Agency as well as a subcontract from Thomas Jefferson National Accelerator Facility under contract DE-AC05-06OR23177 from the Department of Energy as supplemented by ARRA funds.

References:

 P. Kneisel *et al.*, Proceedings of 2005 Particle Accelerator Conference, Knoxville, TN, TPPT076 (2005).
S. Calatroni, Physica C 441, 95 (2006).

5:00pm VT+MN+NS+SS+AS-TuA10 Development via Energetic Condensation of Niobium Thin Films Tailored for Superconducting RF Applications, A.-M. Valente-Feliciano, Jefferson Lab

For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. In the recent years, RF cavities performances have approached the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, an interesting alternative has been recently proposed by Alex Gurevich with the Superconductor-Insulator-Superconductor multilayer approach, using the benefit of the higher critical field H_{c2} of higher- T_c superconductors without being limited with their lower Hc₁.

JLab is pursuing this approach with the development of multilayer structures based on NbTiN via magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS). Insulators such as, AlN, Al_2O_3 and MgO are being investigated as candidates for the insulator layers.

This paper present the the characteristics of NbTiN and insulator layers produced and results on NbTiN-based multilayer structures on bulk Nb and thick Nb films.

5:20pm VT+MN+NS+SS+AS-TuA11 Evaluation of Secondary Electron Emission Yield Suppression Coatings at CesrTA, Y. Li, X. Liu, J. Calvey, J. Conway, J.A. Crittenden, M.A. Palmer, J.P. Sikora, Cornell University, S.De. Santis, Lawrence Berkeley National Laboratory

The performance of particle accelerators may be significantly limited due to buildup of electron cloud (EC) in the vacuum chambers. The EC buildup intensity is strongly affected by secondary electron emission from interior surfaces of the chambers. Application of coatings with reduced secondary electron yield (SEY) onto vacuum chamber interior surfaces is one of the most economical EC suppression techniques. As a part of the International Linear Collider (ILC) R&D program, the Cornell Electron Storage Ring (CESR) has been successfully reconfigured as a Test Accelerator (CesrTA) to study EC buildup and suppression techniques. During the CesrTA program, various passive SEY-reduction coatings (TiN, amorphous-carbon and diamond-like carbon thin films) have been applied to diagnostic vacuum chambers in CESR in order to evaluate the efficacy of the EC suppression and the vacuum performance of these coatings in an accelerator environment. These chambers are equipped with both vacuum instrumentation (ion gauges and residual gas analyzers), as well as EC diagnostics (retarding field analyzers and RF-shielded pickups). In this paper, we present the results of studies of the vacuum conditioning and EC mitigation performance of these coatings.

5:40pm VT+MN+NS+SS+AS-TuA12 Electron Cloud Mitigation for the Large Hadron Collider (LHC), V. Baglin, G. Bregliozzi, P. Chiggiato, P. Costa Pinto, J.M. Jimenez, G. Lanza, M. Taborelli, C. Yin Vallgren, CERN, Switzerland

One of the main issues for the vacuum system of the Large Hadron Collider (LHC) is the build-up of electron clouds generated by electron multipacting in presence of beams. The occurrence of spatially distributed negative charges can lead to beam instabilities and emittance blow-up, pressure rises with a consequent background growth in the experimental areas, and increased thermal load in the cryogenic sections. The development of electron clouds depends on beam intensity and structure, magnetic field, and, in particular, the secondary electron emission of the beam pipe walls. With respect to this latter point, electron clouds can be eradicated whenever the maximum secondary electron yield becomes lower than a critical threshold. In the LHC the problem has already been tackled at the design phase by introducing TiZrV non-evaporable getter thin film coatings as the baseline for most of the room temperature sectors of the ring. After activation by in situ heating, this material provides maximum secondary electron yield lower than 1.1. In addition, during operation, dedicated scrubbing runs are carried out by generating intentionally electron clouds and electron impingement onto the non-coated vacuum chambers, in a way to reduce their secondary electron yield. Recently magnetron sputtered carbon coatings have been also studied because they can reach exceptionally low secondary electron emission without any heating; their application in the LHC injectors and future LHC components is under investigation.

The effect of electron clouds in the pressure variations during the first months of LHC operation will be presented, together with the effects ascribed to the mitigation techniques.

Authors Index

Bold page numbers indicate the presenter

Baglin, V.: VT+MN+NS+SS+AS-TuA12, 2 Beringer, D.: VT+MN+NS+SS+AS-TuA9, 2 Berman, D.: VT+MN+NS+SS+AS-TuA3, 1 Bregliozzi, G.: VT+MN+NS+SS+AS-TuA12, 2

Calvey, J.: VT+MN+NS+SS+AS-TuA11, 2 Chiggiato, P.: VT+MN+NS+SS+AS-TuA12, 2 Clavero, C.: VT+MN+NS+SS+AS-TuA8, 1;

VT+MN+NS+SS+AS-TuA9, 2 Conway, J.: VT+MN+NS+SS+AS-TuA11, 2 Costa Pinto, P.: VT+MN+NS+SS+AS-TuA12, 2 Crittenden, J.A.: VT+MN+NS+SS+AS-TuA11, 2

— G —

Guisinger, N.P.: VT+MN+NS+SS+AS-TuA8, 1

— J — Jimenez, J.M.: VT+MN+NS+SS+AS-TuA12, 2

$- \mathbf{K} - \mathbf{K}$

Kelley, M.: VT+MN+NS+SS+AS-TuA4, **1** Krim, J.: VT+MN+NS+SS+AS-TuA3, 1

— L —

Lanza, G.: VT+MN+NS+SS+AS-TuA12, 2 Li, Y.: VT+MN+NS+SS+AS-TuA11, **2** Liu, X.: VT+MN+NS+SS+AS-TuA11, 2 Lukaszew, R.A.: VT+MN+NS+SS+AS-TuA8, 1; VT+MN+NS+SS+AS-TuA9, 2

— P —

Palmer, M.A.: VT+MN+NS+SS+AS-TuA11, 2

Reece, C.: VT+MN+NS+SS+AS-TuA9, 2

Roach, W.M.: VT+MN+NS+SS+AS-TuA9, 2

— S —

Santis, S.De.: VT+MN+NS+SS+AS-TuA11, 2 Sikora, J.P.: VT+MN+NS+SS+AS-TuA11, 2 Stroscio, J.A.: VT+MN+NS+SS+AS-TuA1, 1

— T —

Taborelli, M.: VT+MN+NS+SS+AS-TuA12, 2

Valente-Feliciano, A.-M.: VT+MN+NS+SS+AS-TuA10, 2

– W —

Walker, M.J.: VT+MN+NS+SS+AS-TuA3, 1 Wu, A.T.: VT+MN+NS+SS+AS-TuA7, 1

— Y —

Yin Vallgren, C.: VT+MN+NS+SS+AS-TuA12, 2