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8:00am  NM+MN+MS+TF-TuM1  A SANE Approach to 
Programmable Soft Lithography, T.W. Odom, Northwestern University 
 INVITED 
The prototyping of nanoscale features has rarely been separated from the 
scaling of them. In order to create arbitrary patterns, serial techniques such 
as e-beam lithography or focused ion beam milling must start from scratch 
every time; also, the patterns cannot be generated over large areas. In 
contrast, parallel fabrication methods such as molding, imprint lithography 
and soft lithography can scale patterns, but they are limited to transferring 
the same pattern on the mold. The development of new tools that can 
combine the strengths of serial approaches (prototyping patterns, high 
resolution) with those of parallel ones (high throughput, large patterned 
areas) is critical for next-generation applications based on nanostructures. 

This talk will describe an all-moldable nanofabrication platform that can 
generate—from a single master—large-area nanoscale patterns with 
programmable densities, fill factors, and lattice symmetries. Solvent-
assisted nanoscale embossing (SANE) can increase the spacing of patterns 
up to 100% as well as decrease them down to 50% in a single step by 
stretching or heating a thermoplastic substrate. In addition, SANE can 
reduce critical feature sizes as small as 45% compared to those on a master 
by controlled swelling of patterned molds with different solvents. SANE 
can also produce different and reconfigurable lattice symmetries, which 
enables new opportunities to manipulate the electronic, photonic, and 
magnetic properties of nanomaterials. 

8:40am  NM+MN+MS+TF-TuM3  Micromolding Surface-Initiated 
Polymerization: A Versatile Route for Microscale Replication onto a 
Solid Support, C.A. Escobar, J.C. Tuberquia, N. Nizamidin, G.K. 
Jennings, Vanderbilt University 
This presentation will introduce the use of confined surface-initiated ring-
opening metathesis polymerization (SI-ROMP) of perfluoroalkyl or alkyl 
norbornene monomers from solid substrates to synthesize surface-bound 
polymer structures with tunable physical and chemical properties that 
accurately replicate those exhibited by Nature’s engineered, microscopically 
rough, and highly functional surfaces. This approach not only allows 
mimicking of highly evolved and functional surface architectures but also 
provides versatility in that it introduces a wide variety of chemical 
compositions available in materials chemistry, including partially 
fluorinated polymers with ultralow critical surface tensions. Optical 
microscopy and scanning electron microscopy confirm growth of the 
polymer structures and the precise replication of the microscale and 
nanoscale features exhibited by the target natural surface with the added 
freedom to expand beyond Nature’s chemical building blocks. Contact 
angle measurements show that the surface architectures exhibit both 
hydrophobic and oleophobic behavior, and in some cases, 
superhydrophobic properties. This approach is not limited to natural 
surfaces and could be applied in a straightforward manner to a variety of 
synthetic surfaces that have microscale features. 

9:00am  NM+MN+MS+TF-TuM4  Si Mold Etching with Hard Mask for 
Bit-Patterned Media, M. Kurihara, Hitachi, Ltd., Tokyo, M. Satake, Y. 
Tsuchiya, T. Nishida, Central Research Laboratory, Hitachi, Ltd., Japan, Y. 
Tada, H. Yoshida, Hitachi Research Laboratory, Hitachi, Ltd., Japan, N. 
Negishi, Central Research Laboratory, Hitachi, Ltd., Japan 
Bit-patterned media (BPM) is one of the promising candidates for hard disk 
media with areal density greater than 1.0Tb/in2. Nanoimprint lithography 
(NIL) for BPM has also been investigated as a patterning technique to 
reduce the production cost. One of the critical issues in NIL mold 
fabrication is the etching selectivity between silicon and the organic mask 
pattern due to the following two reasons. One is a significant decrease of 
pattern thickness to meet the photo-lithography requirements. This decrease 
remained when applying the self-assembly polymer process to fine 
patterning. The other is the micro-loading effect that causes the etching rate 
drop with pattern size shrinking.  

In this work, we have developed a hard mask process to compensate for the 
low etching selectivity. First, the micro-loading effect in the HBr/Cl2/O2 gas 
chemistry was evaluated with a SiO2 hard mask of 20-nm thickness. This 

SiO2 hard mask was patterned from 30 to 50 nm by EB lithography and 
etched with CHF3 gas chemistry. The coefficients of micro-loading in 
silicon etching were evaluated based on the relationship between hole depth 
and etching time with a hole diameter of 30, 40, and 50 nm respectively. 
With increase of the sidewall taper angle, the micro-loading effect could be 
improved by about 60%. We also confirmed that there was a hole with a 
depth of 87 nm with a diameter of 30 nm. Extrapolating this micro-loading 
effect, it is expected that a hole with a depth greater than 80 nm with a 
diameter of 10 nm will be achieved. This result will satisfy the pattern 
aspect ratio of 2, which is required in NIL. We will also demonstrate the Si 
mold etching with a hard mask by applying the self-assembly polymer in 
which the areal density is greater than 1.0Tb/in2. 

9:20am  NM+MN+MS+TF-TuM5  Directed Assembly of Block 
Copolymers to Advance the Performance of Conventional Lithography, 
P.F. Nealey, University of Wisconsin INVITED 
Our research program aims to integrate self-assembling block copolymers 
into current manufacturing practice. The fundamental concepts of the 
approach are that 1) the most advanced production-oriented exposure tools 
(e.g. 193 nm, EUV, or electron beam lithography) and resist materials are 
used to create patterns of differing chemical functionality on the substrate, 
and 2) films of block copolymers can be directed to assemble in the 
presence of the chemical pattern into predictable and desirable 
morphologies, thereby augmenting and enhancing the lithographic process. 
In comparing the pattern in resist to the pattern of domains induced to 
assemble in the block copolymer film, directed assembly has been 
demonstrated to achieve high degrees of pattern perfection, placement of 
features at the precision of the lithographic tool used to make the chemical 
pattern, improved dimensional control of features, improved line edge and 
line width roughness, and resolution enhancement by factors of two to four. 
In addition, the approach has been demonstrated to robustly achieve non-
regular device-oriented geometries used in the fabrication of integrated 
circuits also with resolution enhancement by multiplication of feature 
density by interpolation on low duty cycle chemical patterns. After 
describing current capabilities, remaining technological questions and 
pathways towards implementation in specific applications will be discussed. 

10:40am  NM+MN+MS+TF-TuM9  Measured Backscattered Electron 
Profile for Optimized Proximity Effect Correction, D.A. Czaplewski, 
L.E. Ocola, Argonne National Laboratory 
Electron beam (e-beam) lithography has been used to create nanoscale 
patterns in myriad of resists with features as small as single nanometers. 
When creating resist features on the single nanometer length scale, the 
process window to create the desire resist structure becomes increasingly 
small. Overdosing or under dosing of critical features causes changes in 
critical dimensions. In addition to the dose required for a single feature, the 
contribution of additional dose due to proximity of nearby features must be 
considered. To solve this problem, finite element analysis software 
packages are available for adjusting dose assignments for different features 
based on size, shape, and placement with respect to other features. The 
FEM software can only work as good as the input parameters. These 
parameters come from the backscattered electron profile. Here, we present 
the measured electron backscattered profile using a negative e-beam resist. 
In order to measure the backscattered profile, we use a pattern of 
intersecting lines surrounded by a large annulus. The lines are measured 
while the annulus provides a circularly symmetric backscattered electron 
dose. The lines and annuli are written with varying doses. By measuring the 
thickness of the resist, the contribution from both the lines and the annulus 
can be determined for different doses and different shapes by using the 
resist contrast curve. By using the contrast curve to assign doses to specific 
resist thicknesses, the specific resist and developer effects are removed from 
the data. The resultant backscattered electron profile can be used as input 
into the FEM model to create more accurate resist dose assignments for 
proximity effect corrected patterns for all resists. 

11:00am  NM+MN+MS+TF-TuM10  CMOS Density Scaling in Non-
Planar Multi-Gate Devices: A Patterning Perspective, M.A. Guillorn, J. 
Chang, S. Bangsaruntip, C.-H. Lin, W.E. Haensch, IBM T.J. Watson 
Research Center INVITED 
The use of planar Si CMOS device technology may continue beyond the 22 
nm node. However, the requirements for the gate dielectric and junction 
depth needed to maintain control of short channel effects might prove to be 
unobtainable in devices scaled to meet the integration density requirements 
of the 14 nm node and beyond. Consequently, an additional method for 
improving the electrostatics of the device is required. This realization has 
driven a steady increase in research on non-planar multi-gate CMOS 
devices over the past 5 years. Raising the Si channel out of the plane of the 
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substrate creates the opportunity to form the gate electrode around multiple 
sides of the channel. This geometry results in a superior situation from an 
electrostatics standpoint compared to a planar device where the gate 
electrode is present only on the top surface of the channel. 

In this talk, we will discuss the challenges of fabricating three non-planar 
multi-gate devices from Si on insulator (SOI) substrates: (1) the FinFET, 
where the gate controls two sides of a thin Si mesa or fin (2) the Trigate 
where the gate controls three sides of a Si fin and (3) a gate-all-around 
nanowire transistor where the gate electrode surrounds all sides of a 
suspended Si channel. We will present experimental results from advanced 
prototypes of these devices fabricated at dimensions and densities relevant 
to 14 and 10 nm node technology. An emphasis will be give to the unique 
role lithography and patterning play in determining the electrical behavior 
of these devices. These results offer insight into what may lie ahead for Si 
CMOS scaling and how it will impact the demands placed on patterning and 
metrology. 

11:40am  NM+MN+MS+TF-TuM12  High Resolution Dry 
Development, D.L. Olynick, D.G. De Oteyza, P. Perera, P. Kulshreshtra, 
P. Ashby, M. Schmidt, S. Dhuey, B.D. Harteneck, R.M. Falch, A. 
Schwartzberg, P.J. Schuck, S. Cabrini, Lawrence Berkeley National 
Laboratory 
As features sizes continue to shrink, new approaches are required to 
overcome roadblocks toward high-resolution lithographic patterning. One 
significant roadblock towards miniaturization is pattern collapse due to 
capillary forces during drying.[1] We have invented a dry development 
method for creation of high resolution and high aspect ratio resist features. 
We use resists that undergo an optical absorption change after exposure to 
high-resolution radiation (here we use electron beam lithography). This 
optical change allows the material to be selectively laser ablated such that 
the resolution is defined by the high-resolution radiation and not limited by 
the laser spot size. Using methyl-acetoxy calix[6]arene, a CW 532 nm laser, 
and spot sizes ~300 nm, we have produced features down to 10 nm in a film 
120 nm thick, with pitch resolution down to 30 nm(Fig. 1). Calixarene was 
introduced as a high resolution electron-beam resist [2] and has 
demonstrated 12.5 nm half-pitch in extreme ultra-violet lithography.[3] 
Typically, films are spun thin to prevent high-resolution pattern collapse in 
thicker films but using the dry development, the patterns are well defined 
even in the thick films. Note, the resist acts negative with solvent 
development, as the cross-linked material can not be removed, whereas it is 
positive under laser dry development at the same electron-beam dose 
conditions. This is in contrast to the thermal dry development process where 
calixarenes are developed in negative tone.[4] With thermal development, 
patterns were demonstrated at 25 nm half-pitch in a 25 nm film (1:1 aspect 
ratio. 

We have systematically studied the optical absorption contrast behavior as a 
function of electron beam dose, laser wavelength, and laser dose. At 532 nm 
laser wavelength, we identified that the absorption is a two photon process 
and found one functional group which is responsible for the optical contrast. 
We will discuss the options for materials beyond calixarenes. 

This work was supported by the U.S. Department of Energy under Contract 
No. DE-AC02-05CH11231. 
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