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2:20pm  GR-TuA2  A Scanning Tunneling Microscopy and 
Spectroscopy Study of Artificially Modified Bilayer Graphene, H. Baek, 
J. Ha, B. Hwang, J. Kwon, Seoul National University, Republic of Korea, 
J.A. Stroscio, National Institute of Standards and Technology, Y. Kuk, Seoul 
National University, Republic of Korea 
Bilayer graphene has drawn considerable attention due to deviation from 
Dirac Fermion picture such as anomalous quantum hall effect and a tunable 
band gap in their spectrum. While a pristine Bernal (AB) stacked bilayer 
graphene can be synthesized by mechanical exfoliation, growth on a SiC 
single crystal and epitaxial growth on metal substrates, separate control of 
the top and the bottom layers has seldom been performed. In this study, 
artificially modified 2D layers were demonstrated with individually stacked 
bilayer graphene. Large-area graphene was grown on a Cu foil by chemical 
vapor deposition (CVD). CVD-grown graphene layers were transferred 
successively onto insulating substrates with minimum chemical process for 
realizing bilayer graphene. In this method the mosaic spread between the 
top and the bottom graphene layers could be varied and an additional thin 
layer structure could be inserted between the two layers. Artificial bilayer 
graphene was investigated using scanning tunneling microscopy and 
spectroscopy. In topographic images and spatially resolved spectrums of 
local density of states, defect scattering and the misorientation between two 
graphene layers suggesting weak interaction compared to the AB stacking 
were found. 

3:00pm  GR-TuA4  Dry Transfer of Single Layer Graphene to 
Polymers, E.H. Lock, S.G. Walton, M. Baraket, M. Laskoski, S. Mulvaney, 
W.K. Lee, P.E. Sheehan, Naval Research Laboratory (NRL), D. Hines, 
Laboratory for Physical Sciences (LPS), J.T. Robinson, Naval Research 
Laboratory (NRL), J. Tosado, M. Fuhrer, University of Maryland, College 
Park 
The ability to grow and transfer large area single-layer graphene is critical 
from both fundamental and applied points of view. The transfer of large 
area samples will facilitate fundamental studies of graphene’s unique 
properties. It can also allow for the fabrication of three-dimentional 
structures, electrically insulated graphene bilayers, graphene on previously 
unexplored substrates and “curved” graphene with non-trivial geometry. 
Currently, single layer graphene grown via CVD on metal foils is 
transferred to other substrates via chemical etching of the foil. The transfer 
process is time consuming, generates chemical waste, and destroys the foils.  

We have developed method for direct dry transfer of graphene grown on Cu 
foils to polymers. The method relies on the differential adhesion between 
graphene, the metal foil, and the receiving polymer. A successful print 
results when the adhesion of graphene to the polymer surface is stronger 
than its adhesion to the metal foil. Plasma treatment of polymers allowed 
for the attachment of perfluorophenylazide (PFPA) linker molecule. The 
transfer printing was performed by placing the PFPA treated polymer 
surface in contact with graphene covered Cu foil and applying heat and 
pressure. Then, the polymer substrate with transferred graphene was 
separated from the Cu foil. In this talk, details of the printing process along 
with graphene film characterization will be discussed. 

This work was supported by the Office of Naval Research. M. Baraket 
appreciates the NRL/NRC postdoctoral research fellowship. 

4:00pm  GR-TuA7  Studies on Ozone Based Atomic Layer Deposition of 
High-k Dielectrics on Graphene, S. Jandhyala, G. Mordi, B. Lee, J. Kim, 
University of Texas at Dallas, P.-R. Cha, Kookmin University, Korea 
Graphene, being a two dimensional material, is one of the most promising 
alternative channel materials for post-Si generation [1-3]. However, being 
just one atom thick and having an inert surface, it poses a huge challenge to 
develop a top-gate dielectric process for graphene-based devices. Several 
techniques are currently being explored for depositing dielectrics including 
physical-vapor deposition (PVD), chemical-vapor deposition (CVD) and 
atomic layer deposition (ALD) after chemical ‘functionalization’ of 
graphene (using NO2 or O3) or after depositing nucleation layers (such as 
Al, PTCA, PVA) on graphene [3]. 

Here, we will present a novel technique developed by our group for 
depositing ALD high-k dielectrics such as Al2O3 on graphene through 
ozone functionalization [4]. Physisorption of ozone has been claimed to be 
the plausible mechanism for functionalizing the graphene surface [5]. Based 
on Langmuir adsorption equation, the amount of ozone adsorbed on 
graphene can be increased by increasing the partial pressure of ozone. By 
utilizing this, we have been able to precisely control the dielectric 
thicknesses and successfully scale dielectrics on graphene down to a 
thickness of ~3 nm. We employed both AFM on HOPG/graphene and in-
situ electrical characterization of graphene-FETs in order to understand the 
adhesion mechanisms of ozone with graphene, enabling the deposition of 
ALD dielectrics. For in-situ electrical characterization, we used package-
level devices with back-gated graphene devices to detect molecules 
adsorbed on graphene surface. The observed charge scattering mechanisms 
and effect on mobility due to the interaction of ozone with graphene as a 
function of temperature and amount of ozone will be presented. In-situ 
studies regarding the role of TMA (Tri-methyl Aluminum) will also be 
discussed based on experiments in actual ALD chambers. 
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4:20pm  GR-TuA8  Fluorine Functionalization of Epitaxial Graphene 
for Uniform Deposition of Ultrathin High-κ Dielectrics, V.D. Wheeler, 
N.Y. Garces, L.O. Nyakiti, R.L. Myers-Ward, J. Culbertson, C.R. Eddy Jr., 
D.K. Gaskill, U.S. Naval Research Laboratory 
Thermal atomic layer deposition (ALD) is a viable approach to attain high-
quality ultrathin dielectric films needed for graphene devices, but the 
hydrophobic nature of the graphene surface inhibits direct application of 
thermal ALD oxides. Several methods have been explored to render the 
surface more susceptible to ALD[1-3], but these techniques often result in 
graphene mobility degradation and/or shifts in the Dirac voltage due to 
charge in the gate stack. In this work, we investigated a simple dry chemical 
approach using XeF2to functionalize the graphene surface prior to ALD 
which results in conformal ultrathin high-κ oxides without degradation of 
the underlying graphene electrical properties. Epitaxial graphene samples 
were grown on semi-insulating, on-axis (0001) 6H-SiC substrates using an 
Aixtron VP508 SiC reactor at 1650°C for 120 min. Fluorination of the 
graphene was performed in a Xactix X3 etcher operating in pulse mode. 
Optimum fluorine exposure conditions consisted of six, 20s pulses with 
constant XeF2 and N2 carrier gas partial pressures of 1 and 35 torr, 
respectively. X-ray photoelectron spectroscopy (XPS) was used to 
chemically analyze the functionalized surface prior to oxide deposition. 
ALD Al2O3 and HfO2 films (≤ 15 nm) were deposited at temperatures 
between 150 - 225 °C using TMA or TEMAHf and deionized (DI) water 
precursors. Growth was initiated with 20 DI water pulses. Oxide coverage 
was characterized with atomic force microscopy and scanning electron 
microscopy, while graphene mobility changes were observed with van der 
Pauw Hall measurements. Capacitance-voltage (C-V) measurements were 
conducted on Ti/Au C-V dots to extract the dielectric constant and electrical 
quality of the oxide. Initial results show that 15 nm conformal, uniform 
Al2O3 and HfO2 films are obtained with an optimized XeF2 surface 
treatment prior to ALD. XPS showed that the optimum XeF2 treatment 
resulted in ~6% fluorine on the surface and the presence of only C-F bonds 
which provide ALD reaction sites needed for uniform oxide deposition. 
Graphene mobilities were maintained, and occasionally increased, implying 
little impact of the XeF2 treatment or ALD oxide on the underlying 
graphene properties. Raman spectroscopy reveals no change in the D/G 
ratio after XeF2 and oxide deposition, verifying that the graphene lattice 
quality is maintained. The viability of the fluorination method for achieving 
ultrathin films (<10 nm) will be presented along with electrical C-V data to 
show the electronic quality of the ALD oxides.  
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4:40pm  GR-TuA9  Improving Performance of CVD Graphene Field 
Effect Transistors by Reducing Water Trapped at the 
Graphene/Substrate Interface, J. Chan, A. Venugopal, A. Pirkle, S. 
McDonnell, D. Hinojos, The Univ. of Texas at Dallas, C. Magnuson, R.S. 
Ruoff, The Univ. of Texas at Austin, L. Colombo, Texas Instruments Inc., 
R.M. Wallace, E.M. Vogel, The Univ. of Texas at Dallas 
Graphene grown by chemical vapor deposition (CVD) provides a promising 
pathway for large area fabrication of graphene field effect transistor (FET). 
However, the performance of CVD graphene FETs reported to date is 
poorer than FETs fabricated using exfoliated graphene. CVD graphene 
FETs often exhibit strong hysteresis accompanied with low mobility, large 
positive Dirac point (VDirac) and large intrinsic carrier concentration. CVD 
graphene is exposed to a number of aqueous solutions and deionized water 
when it is transferred to a device substrate. We find that the large VDirac shift 
and strong hysteresis observed in CVD graphene FET are largely due to 
water trapped in the graphene/substrate interface during the transfer process.  

In this study, CVD graphene grown on copper is transferred to SiO2 
substrates with the following three interfacial conditions: i) normal 
hydrophilic SiO2, ii) SiO2 with 20nm of Al2O3, and iii) a hydrophobic 
surface prepared by coating hexamethyldisilazane (HMDS). Device 
performance, including mobility, VDirac and intrinsic carrier concentration 
are compared in ambient as well as in vacuum. Gate hysteresis is analyzed 
by measurement of time-resolved channel resistance at various back-gate 
bias voltages. We find that the gate hysteresis is partially reduced by 
transferring the graphene onto a substrate coated with HMDS. Vacuum 
pump down and low temperature (80 °C) annealing can remove the 
remaining gate hysteresis and VDirac shift. The resulting hole mobility is 
5,420cm2/Vs, which is high compared to most of the CVD graphene 
mobility values reported in the literature.  

As a control experiment, the CVD graphene FET fabricated on untreated 
SiO2 shows a smaller mobility, a larger VDirac and a stronger hysteresis 
compared to the HMDS coated sample. Under vacuum the hysteresis is 
reduced but remains significant. We believe the remaining hysteresis is due 
to adsorbates trapped at the substrate/graphene interface. A graphene FET 
prepared on a substrate with an Al2O3 interface shows less hysteresis than 
the sample fabricated on an untreated SiO2 surface but more than that of the 
HMDS coated surface. In order to study the influence of water trapped 
between the graphene and the substrate, water is intentionally replaced by 
isopropanol at the end of the transfer process before drying. In samples 
prepared using this method, hysteresis and VDirac point shift are both 
reduced. These results indicate that efforts to prevent trapping of water 
molecules at the graphene/substrate interface during the transfer process 
will improve the performance of CVD graphene FETs.  

This work was supported by the NRI SWAN center, ONR, NSF and 
Sandia's LDRD program. 

5:00pm  GR-TuA10  Improved Performance of Top-Gated Graphene-
on-Diamond Devices, A.V. Sumant, Argonne National Laboratory, J. Yu, 
G. Liu, A. Balandin, University of California, Riverside 
Since the discovery of graphene and realization of its exceptional electronic 
properties in suspended form, there have been many efforts in fabricating 
FET-type devices based on single and bilayer graphene on SiO2 substrate. 
However, performance of these devices is found to be inferior to the 
expected intrinsic properties of graphene. It has been observed that apart 
from carrier mobility in graphene, which is sensitive to trapped charges, and 
surface impurities at the graphene-oxide interface, breakdown current 
density in graphene depends sensitively on the heat dissipation property of 
the underlying supporting substrate. Although graphene has extremely high 
intrinsic thermal conductivity, it is reported that in graphene devices, more 
than 70% of the heat dissipates through the 300 nm SiO2 on silicon directly 
below the active graphene channel while the remainder is carried to the 
graphene that extends beyond the device and metallic contacts. Such a 
distribution of heat in to the substrate cause undesirable effects on the 
overall performance of the device. We show for the first time that by the use 
of thin CVD-grown ultrananocrystalline diamond thin films on silicon in 
graphene-on-diamond configuration, the heat dissipation can be improved 
substantially leading to the higher breakdown current density of more than 
50% as compared to conventional graphene-on-oxide substrates. We also 
describe the fabrication of the top-gate graphene-on- diamond devices and 
discuss their performance. The obtained devices had the carrier mobility ~ 
2354 cm2V-1S-1 for holes and ~1293 cm2V-1S-1 for electrons. The 
obtained results are promising for developing high-performance graphene-
on-diamond devices and interconnects for future electronics. 

Use of the Center for Nanoscale Materials was supported by the U. S. 
Department of Energy, Office of Science, Office of Basic Energy Sciences, 
under Contract No. DE-AC02-06CH11357. The work in Balandin group at 
UCR was supported, in part, by DARPA – SRC Center on Functional 
Engineered Nano Architectonics (FENA). 

5:20pm  GR-TuA11  Growth of Turbostratic Graphene on Sapphire, S. 
Rothwell, P.I. Cohen, University of Minnesota, M. Kumar, National 
Physical Laboratory, India 
Large area turbostratic graphene was grown on the (0001) plane of sapphire 
by thermal decomposition of acetylene. Sapphire is an attractive substrate 
since it has a symmetry match and close coincidence lattice match to 
graphene. It is a good insulator, appropriate for electronics applications, and 
large single crystal wafers are readily available. We have found that only 
after overcoming nucleation barriers, high quality graphene can be grown 
directly on sapphire without transfer. The sapphire was first heated to about 
1400 C to obtain a reconstructed sqrt 31x31 R9 surface structure. The 
reconstruction was monitored in real time via reflection high energy 
electron diffraction, which was possible due to the low Debye-Waller 
factor. After obtaining a clean reconstructed surface, the sample was cooled 
to near room temperature and exposed to 10 Torr of acetylene. The sample 
was then heated to 1400 C in the presence of acetylene, in order to nucleate 
growth. At these pressures, sufficient acetylene coverage for growth was 
maintained during the ramp to high temperatures. Continued exposure to 
acetylene at 1400 C did not result in further growth. We speculate that at 
high temperature there is not sufficient residence time for incorporation, 
thus lower temperature is needed for further growth. Controlling pressure 
and temperature during a cool down phase becomes the fine control for film 
thickness. For example, 10 nm thick graphene samples were obtained by 
cooling in 1 – 7 E-7 Torr of acetylene. Transmission electron diffraction 
showed very sharp, nearly continuous rings, indicating large domains and 
no preferential azimuthal rotation between planes. X-ray diffraction showed 
an increased layer separation of 0.345 nm compared to graphite. Electron 
energy loss spectroscopy showed bulk-like plasmons or interband 
transitions, indicative of multilayer graphene. Raman spectra showed 2D/G 
peak intensity ratios of 0.5 to 1, comparable to literature values for 
turbostratic graphene. The spectra also exhibit the expected broader highly 
symmetric 2D peak. Thicker films could be easily lifted from the substrate. 
Films greater than 100 nm thick exhibited macroscopic ripples while 10 nm 
thick films were flat. Hydrogen was explored as a means to control growth 
but was found to rapidly etch graphene and to passivate the room 
temperature reconstructed sapphire surface. The growth was modeled with a 
simple rate equation analysis. These results offer a route to large area 
graphene grown directly on single crystal sapphire wafers.  

Partially supported by the University of Minnesota IREE and by the 
National Physical Laboratory, India  

5:40pm  GR-TuA12  Scanning Tunneling Microscopy and 
Nanomanipulation of Graphene-Coated Water on Mica, J.D. Wood, 
K.T. He, E. Pop, J.W. Lyding, University of Illinois at Urbana Champaign 
Graphene on ultraflat substrates such as hexagonal boron nitride has shown 
to suppress charge puddle formation and give high carrier mobility [1,2]. 
Transfer of graphene to other ultraflat substrates such as muscovite mica 
might bring about similar transport characteristics. To that end, we place 
graphene on mica for scanning tunneling microscopy (STM) studies. We 
grow monolayer graphene on Cu by chemical vapor deposition and support 
it with polymethyl methylacrylate (PMMA). We clean the film with water 
baths and transfer it to mica. In contrast to previous atomic force 
microscopy (AFM) experiments of dry-transferred exfoliated graphene on 
mica [3,4], our graphene films trap multiple water layers. After a 700 ºC in 
situ degas, we achieve atomic resolution of graphene on water on mica, and 
we notice that there are at least 3 layers of ordered, bound water on mica 
[5], due to the wet transfer and the highly hydrophilic mica. We can 
atomically image graphene monolayers, bilayers, and grain boundaries 
regardless of the underlying water structure. Additional water layers on top 
of the bound water are rough, weakly bound, and amorphous. We notice up 
to 5 layers of graphene-encapsulated water on mica. Using the STM tip, we 
can nanomanipulate these amorphous layers at high tunneling conditions 
(>6 V, 1 nA). These water patterns are highly stable, invariant after several 
days of scanning. Water nanomanipulation under graphene could help 
elucidate water’s complex bonding structure and charge transfer from 
graphene to encapsulated species. Further, graphene-coated water can assist 
in STM-based research of other aqueous-suspended nanostructures.  

[1] Xue et al., Nature Mat. 10, 282 (2011); [2] Dean et al., Nature Nano. 5, 
722 (2010); [3] Xu et al., Science 329, 1188 (2010); [4] Lui et al., Nature 
462, 339 (2009); [5] Park et al., Phys. Rev. Lett. 89, 85501 (2002). 
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