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2:00pm  GR+TF+NS-ThA1  Rationally Patterned Large-Area 
Semiconducting Graphene Materials from the Top-Down and the 
Bottom-Up, N. Safron, M. Kim, P. Gopalan, M. Arnold, University of 
Wisconsin-Madison INVITED 
We are experimentally investigating self-assembling lithography (e.g. block 
co-polymer and nanosphere lithography) to create nanostructured graphene 
materials with feature sizes below what is easily achieved using optical and 
electron-beam lithography (< 20 nm), with the motivation of opening up a 
technologically relevant band gap in graphene. We are particularly 
interested in a novel form of semiconducting graphene that we call 
nanoperforated graphene, which consists of graphene perforated by regular 
hexagonal arrays of nanoscale holes. Unlike nanoribbons, nanoperforated 
graphene advantageously retains a large-area two-dimensional form factor. 
In this talk, we will discuss the inter-relationship between the physical 
structure of nanoperforated graphene and its electronic properties, with 
specific emphasis on how its band gap experimentally varies with feature 
size and how charge transport is affected by structure (including the role of 
edge defects and the observation of single-electron charging effects). We 
will also report on efforts in our group to realize nanostructured graphene 
materials with well controlled edge structure and superior properties via 
scalable and rationally controlled bottom-up growth that avoids top-down 
etching without sacrificing arbitrary pattern forming ability. 

2:40pm  GR+TF+NS-ThA3  Quantum Pumping in Graphene 
Nanoribbons, T. Kaur, Ohio University, L. Arrachea, Universidad de 
Buenos Aires, Argentina, N. Sandler, Ohio University 
The interest in the development of devices at the nanoscale has intensified 
the search for mechanisms that provide tailored control of transport 
properties while reducing effects of heat dissipation and contact resistance. 
For instance, charge pumping is one of the current generating methods that 
allows for minimizing the effects of contact resistance. Charge pumping is 
the mechanism used to generate DC currents in open-quantum systems by 
applying local de-phased time-dependent potentials. 

We analyze the properties of non-equilibrium zero-bias current through 
nano-ribbons using tight-binding Hamiltonians and the Keldysh formalism. 
This theoretical treatment, based on non-equilibrium Green's function 
techniques, is the most appropriate one to address questions for systems in 
non-linear, out of equilibrium conditions. We develop a numerical 
implementation for the models described below in a wide range of non-
equilibrium regimes. 

After reviewing results for quantum pumping in a one-dimensional chain 
attached to two reservoirs, with two local single-harmonic potentials 
oscillating in time, we study finite-width ribbons of square and graphene 
lattices. The transmission function reveals the value of the resonant 
frequency and explains how the quantum charge pumping works. We 
analyze the dependence of the DC current as a function of different 
parameters such as chemical potential, pumping amplitude, frequency, etc. 
In addition, the role of reservoirs is fully described. Pumped currents can 
also be generated by application of laser fields. We present the comparison 
between these two pumping methods. Possible extensions for disordered 
systems will be discussed. 

3:00pm  GR+TF+NS-ThA4  First-principles Study of Field Emission 
from Graphene Nanoribbons, J. Driscoll, K. Varga, Vanderbilt 
University 
A real-space, real-time implementation of time-dependent density 
functional theory [1,2,3] is used to study electron field emission from 
graphene nanoribbons. The structures are shown to be good field emitters 
with spatial variation of the emission current influenced by the presence of 
passivating hydrogen. The nanoribbons are seen to produce slightly lower 
currents than nanotubes formed from the ribbons. Spin-polarized field 
emission from carbon nanotubes has been calculated with and without Fe 
adsorbates (atoms and clusters). It was observed that various adsorbates 
cause the separation of density into spin-polarized regions. The calculations 
predict that carbon nanotubes with various adsorbates can be used as spin-
polarized current sources. The spin-polarized results for nanotubes will be 
compared to similar 

calculations for graphene nanoribbons. 
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3:40pm  GR+TF+NS-ThA6  Quantum Transport Properties of 
Modified Graphene Nanoribbons with Boron Nitride Domains at the 
Nanoscale, A. Lopez-Bezanilla, Oak Ridge National Laboratory 
Carbon-based systems are being widely investigated as potential candidates 
for nanoelectronic interconnects and transistors. The control of electric 
current is, therefore, an important challenge in nanostructures engineering. 
The possibility of creating hybrid one-atom thick layers containing C, B and 
N atoms have attracted much attention as they can provide an efficient way 
to create new materials with properties complementary to those of graphene 
and h-BN.  

Here we present a theoretical methodology and study of charge transport 
through GNRs with BN domains randomly distributed along the ribbon 
surface. We resort to both first principles calculations, to obtain a suitable 
parametrization of the electronic structure, and a transport approach based 
on the ab initio results to explore conduction regimes through large and 
disordered systems. The quantum transport modeling is based on the 
Green’s function formalism, combining an iterative scheme for the 
calculation of transmission coefficients with the Landauer’s formula for the 
coherent conductance. 

Our results describe how the conductance of the hybrid systems is altered as 
a function of incident electron energy and BN domain density. We explore 
the transport regimes comparing different degrees of BN doping and BN 
domain size for ribbons of various widths and lengths on the order of the 
micrometer. A comparison with other types of defects such as atoms in 
epoxy configuration and functional groups covalently attached to the ribbon 
surface will be also discussed. 

4:00pm  GR+TF+NS-ThA7  Simple and Scalable Route for the 
‘Bottom-Up’ Synthesis of Few-Layer Graphene Platelets and Thin 
Films, K. Coleman, University of Durham, UK 
Graphene has generated much interest owing to its exceptional electronic 
properties and high mechanical strength. This has enabled new types of 
electronic devices and composite materials to be envisaged. The main 
problem is the availability of the material and the difficulties associated 
with its synthesis. Here we present a simple, convenient and scalable 
chemical vapour deposition method involving metal alkoxides in ethanol to 
produce few-layer graphene platelets. The graphene platelets have been 
fully characterised using TEM, SEM, AFM, XPS and XRD. The 
methodology used has the added flexibility in that it can be used to grow 
conducting transparent thin films on inert substrates such as silicon wafer 
and quartz glass. Importantly, no heavy metal catalysts were required to 
produce the few-layer graphene platelets or graphene films and all non-
carbon by-products are soluble in water. 

4:20pm  GR+TF+NS-ThA8  Approaching the Intrinsic Bandgap in 
Suspended High-Mobility Graphene Nanoribbons, M.-W. Lin, C. Ling, 
Wayne State University, L.A. Agapito, N. Kioussis, California State 
University Northridge, Y. Zhang, M.-C. Cheng, Wayne State University, 
W.L. Wang, E. Kaxiras, Harvard University, Z.X. Zhou, Wayne State 
University 
We report the first variable-temperature electrical-transport study of 
suspended ultra-low-disorder GNRs with nearly atomically smooth edges. 
Suspension of the GNRs not only removes the substrate influence but also 
allows a thorough removal of impurities, including those trapped at the 
interface between the GNR and the substrate, leading to a substantial 
increase of the carrier mobility. We observe high mobility values over 3000 
cm2 V-1 s-1 in GNRs that are ~ 20 nm wide, the highest reported to date on 
GNRs of similar dimensions. Furthermore, we demonstrate that the 
activation gap extracted from the simple activation behavior of the 
minimum conductance and residual carrier density at the charge neutrality 
point approaches the intrinsic bandgap in ultra-low-disorder GNRs. 
Comparison of the bandgap values of multiple samples shows that the 
bandgap in our ultra-low-disorder samples is approximately inversely 
proportional to the ribbon width, consistent with theoretical predictions. On 
the other hand, non-negligible disorder in GNRs obscures the observation of 
the intrinsic bandgap in transport measurements. In addition, the size of the 
bandgap derived from the transport measurements is in quantitative 
agreement with the results of our complementary tight-binding calculations 
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for a wide range of chiral angles characterizing the GNR structure, 
suggesting that the underlying electronic origin of bandgap enhancement is 
the magnetism of the zigzag edges.  

4:40pm  GR+TF+NS-ThA9  Fabrication of Polymer-Protected 
Graphene Nanoribbons by Thermal Dip-Pen Nanolithography (tDPN), 
W.K. Lee, J.T. Robinson, R. Stine, A.R. Laracuente, Naval Research 
Laboratory, W.P. King, University of Illinois at Urbana Champaign, P.E. 
Sheehan, Naval Research Laboratory 
The lithographic patterning of graphene nanoribbons (GNRs) to engineer 
band gaps has gained much attention as one path to realizing graphene-
based devices. We employed thermal dip-pen nanolithography (tDPN)1 to 
pattern GNRs on CVD single-layer graphene (SLG) that had been 
transferred onto a SiO2 substrate. In tDPN, a heatable AFM cantilever 
regulates the deposition of an ink through controlled melting, much like a 
nanoscale soldering iron. tDPN has been successful at depositing polymers 
ranging from semiconductors to insulators on a variety of surfaces. To 
create the nanoribbons, we deposited polystyrene (PS) ribbons via tDPN on 
a SLG film between the source and drain electrodes. The areas of the 
graphene not protected by the polymer were then modified to isolate thin 
graphene nanoribbons. We show that the PS protected ribbon was the only 
conductive pathway for active device. This method allows a wide range of 
nanoribbon widths to be created and avoids electron beams which can 
damage graphene. The impact of the polymer choice on conductivity as 
well as the choice of isolation will discussed. For instance, we find that the 
PS ribbon can serve not only as an etch mask to pattern GNRs but also a 
stable dopant layer. The detailed fabrication and characterization of these 
structures will be presented. 

1. WK Lee, et al. (2010) “Maskless Nanoscale Writing of Nanoparticle-
Polymer Composites and Nanoparticle Assemblies using Thermal 
Nanoprobes”, Nano Letters, 10, 129  

5:00pm  GR+TF+NS-ThA10  Edge Termination of Modified Graphene 
Oxide during Thermal Exfoliation, M. Acik*, Y.J. Chabal, The 
University of Texas at Dallas 
Nanopore formation in carbon materials (e.g. exfoliated nanostacks of 
graphite) has been widely studied through mechanical exfoliation, 
intercalation, electrochemical separation, chemical or thermal exfoliation of 
graphite oxide (GO) via expansion with partial oxygen removal. Amongst 
all these methods, exfoliation of modified graphene (GO), a solution-
processable precursor compound where aromatic and heterocyclic rings 
with embedded oxygen functionalities exist, by thermal processing still 
remains elusive for the following reasons: (1) poor control of GO 
composition (initial oxygen content), (2) poor understanding of the 
chemical composition, (3) unknown role of oxygen, adjoining oxygen 
interactions, and edge termination with oxygen. Infrared absorption 
spectroscopy coupled with in-situ thermal annealing process [1] makes it 
possible to examine the chemical changes taking place during thermal 
reduction to identify and understand interacting molecular environment and 
the edge functionalization. To unravel the complex mechanisms leading the 
removal of oxygen in GO, we have performed in-situ transmission infrared 
absorption spectroscopy (IRAS) measurements of graphene/graphite oxide 
(GO) thin and bulk films upon thermal annealing (60-850°C) in vacuum 
(10-3-10-4 Torr). Control of the edge geometry of finite-sized modified 
graphene flakes depends very much on the control of the processing 
methods. This edge reconstruction further determines electronic, electric, 
optical and mechanical properties of the exfoliated modified graphene 
flakes. Therefore, we not only perform studies deriving a thermal reduction 
mechanism, but also examine the edge reconfiguration with oxygen. We 
report here the observation of a surprisingly strong IR absorption band that 
occurs only upon thermal reduction of GO. After annealing at 850°C in 
vacuum, the strong enhancement of the new IR active absorbance band is 
observed at ~800 cm-1[2]. The intensity of this band is 10-100 times larger 
than what is expected for the oxygen content of the reduced GO, namely 
between 5 and 8 at.%. This band is assigned to a specific oxidation state, 
involving oxygen located in the basal plane (forming C-O-C bonds) and at 
atomically straight edges of reduced graphene. The large enhancement in 
IR absorption is attributed to the direct participation of electrons, induced 
by the asymmetric C-O-C stretch mode displacement. These findings open 
new possibilities in the field of nanoelectronics for all sensor and energy 
storage applications. [1] M. Acik, et al. J. Am. Chem. Soc. (2011), in 
preparation. [2] M. Acik, et al. Nat. Mater. 9, 840-845 (2010). 

5:20pm  GR+TF+NS-ThA11  Study of Ridges on Epitaxial Graphene on 
6H-SiC(0001), Y.Y. Li, Y. Liu, L. Li, University of Wisconsin-Milwaukee 
The graphitization of hexagonal SiC surfaces provides a viable alternative 
for the synthesis of wafer-sized graphene for mass device production. 

                                                 
* Morton S. Traum Award Finalist 

During the later stages of growth, ridges are often observed on the graphene 
layers as a result of bending and buckling to relieve the compressive strain 
between the graphene and SiC substrate, which also introduce ripples in the 
otherwise atomically flat graphene sheet. In this work, we show, by atomic 
resolution STM imaging, that ridges are in fact bulged regions of the 
graphene layer, forming one-dimentional (nanowire) and zero-dimentional 
(quantum dot) nanostructures. We further demonstrate that their structures 
can be manipulated and even new ones created by the pressure exerted by 
the STM tip during imaging. These results and their impact on the 
electronic properties of epitaxial graphene on SiC(0001) will be presented 
at the meeting. 
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