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8:00am  ET+EM+NS+GR-TuM1  Electron Transport Study of 
Graphene on SiC Using Scanning Tunneling Potentiometry, K. Clark, S. 
Qin, Oak Ridge National Laboratory, G. He, Carnegie Mellon University, 
G. Gu, The University of Tennessee, R.M. Feenstra, Carnegie Mellon 
University, A.-P. Li, Oak Ridge National Laboratory 
The unique electronic and transport properties of graphene have helped this 
material emerge as a perspective graphene based electronic system. Single 
layers of graphene formed on SiC look to be a promising system for the 
realization of graphene electronics. To utilize the full potential of graphene 
on SiC a complete understanding of the physical and electronic properties 
of this system is needed. This study uses Scanning Tunneling Microscope 
(STM) images along with scanning tunneling spectroscopy to characterize 
the sample surface. STM images clearly show the distinction between 1 
monolayer (ML) and 2ML regions. The 1ML to 2ML transition is further 
confirmed by point spectroscopy measurements and spectroscopic mapping 
across the boundary. Defects, grain boundaries, step edges and other 
potential scattering centers are thought to play a major role in the electronic 
properties, especially in transport, along the graphene sheets. Using a low 
temperature four-probe scanning tunneling microscope, potentiometry 
measurements are performed on epitaxial graphene grown on 4H-SiC. 
Potentiometry maps spanning the transition from 1ML to 2ML graphene 
layers show a contrast change indicating a potential change at this interface. 
Preliminary results of the transport along this potentially revolutionary new 
electronic system will be presented. This research was conducted at the 
Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge 
National Laboratory by the Office of Basic Energy Sciences, U.S. 
Department of Energy. 

8:20am  ET+EM+NS+GR-TuM2  Engineering the Electronic States of 
CVD Grown Few Layer Graphene by Twisting and Lattice Distortion, 
M.H. Pan, Oak Ridge National Laboratory, X.T. Jia, S. Bhaviripudi, 
Massachusetts Institute of Technology, V. Meunier, Rensselaer Polytechnic 
Institute, M.S. Dresselhaus, J. Kong, Massachusetts Institute of Technology 
Few layer graphene (FLG) can have advantages over single layer graphene 
because it has a larger current-carrying capacity and the electronic 
properties are sensitive to more engineerable system parameters. In 
particular, Hass et al. have demonstrated that orientational disorder is 
normally present in carbon-face SiC epitaxial FLG samples.[ 1] Recently 
both theoretical and experimental studies suggest that strain can be used to 
engineer graphene electronic states through the creation of a pseudo–
magnetic field. [ 2 ] Here we present both scanning tunneling 
microscopic/spectroscopic (STM/S) studies of chemical vapor deposition 
grown few layer graphene samples. There indeed exists a twisting between 
the stacked graphene layers, confirmed by both high-resolution STM 
images and low temperature spectroscopic measurements. Our results show 
that, by stretching graphene along three symmetry directions, a strain-
induced pseudo magnetic field can lead to the formation of different Charge 
Density Wave (CDW) states at the top layer of graphene.  

[i] Hass, J., Varchon, F., Phys. Rev. Lett. 100, 125504(2008) 

[ii] Levy, N. et al., Science 329, 544 (2010). 

  

  

8:40am  ET+EM+NS+GR-TuM3  Unique One- and Two-Dimensional 
Phenomena Observed in Carbon Nanotubes and Graphene, S. Cronin, 
University of Southern California INVITED 
Our ability to fabricate nearly defect-free, suspended carbon nanotubes 

(CNTs) has enabled us to observe several phenomena never seen before in 
CNTs, including breakdown of the Born-Oppenheimer approximation[1], 
mode selective electron-phonon coupling[2], leading to negative differential 
resistance (NDR) and non-equilibrium phonon populations, and a Mott 
insulator transition[3]. In this work, Raman spectroscopy is used to measure 
individual, suspended CNTs under applied gate and bias potentials. Raman 
spectroscopy of periodic ripple formation in suspended graphene will also 

be reported. As will be shown, preparing clean, defect-free devices is an 
essential prerequisite for studying the rich low-dimensional physics of 
CNTs and graphene.  

1. Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and 

Cronin, S.B., "Direct Observation of Born-Oppenheimer Approximation 
Breakdown in Carbon Nanotubes." Nano Letters, 9, 607 (2009). 

2. Bushmaker, A.W., Deshpande, V.V., Bockrath, M.W., and Cronin, 

S.B., "Direct Observation of Mode Selective Electron-Phonon Coupling in 
Suspended Carbon Nanotubes." Nano Letters, 7, 3618 (2007). 

3. Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and 

Cronin, S.B., "Large Modulations in the Intensity of Raman-Scattered Light 
from Pristine Carbon Nanotubes." Physical Review Letters, 103, 067401 
(2009). 

9:20am  ET+EM+NS+GR-TuM5  Probing Surface Band Conduction 
through Back-Gated Conductance Measurements on Si 
Nanomembranes, W.N. Peng*, J. Endres, S. Scott, Z. Aksamija, D.E. 
Savage, I. Knezevic, M.G. Lagally, M. Eriksson, University of Wisconsin 
Madison 
Silicon-on-insulator substrates provide large-area Si nanomembranes 
(SiNMs) mechanically supported by bulk handle wafers. Because of the 
intervening oxides, SiNMs are also electrically isolated from the substrates. 
The typical membrane thickness is less than a few hundred nanometers. 
Because they are so thin, SiNMs display interesting transport phenomena 
influenced by surface effects. Here, we demonstrate a novel method to 
probe surface transport via conductance measurements on SiNMs. When 
contacts are placed on the front surface, a current flows between the source 
and the drain via the membrane body as well as its surface. By utilizing an 
underlying back gate (the Si handle substrate), the conductance through the 
membrane can be continuously tuned and made smaller than the surface 
contribution, enabling experimental determination of the surface 
conductance. We measure the membrane conductance as a function of both 
the membrane thickness and the backgate voltage in ultra-high vacuum. In 
contrast to H-terminated Si surfaces, clean reconstructed Si(001)(2×1) 
surfaces show a constant-conductance regime when the backgate voltage is 
varied, and the conductance in this regime does not depend on membranes 
thickness. We demonstrate that the constant conductance (on the order of 
10-9 Siemens) stems from an additional conduction channel through the 
dimer-reconstructed surface π* band. By comparing the experimental 
results to numerical simulations, the surface band mobility is determined to 
be in the range 10-50 cm2/Vs.  

Research supported by NSF [UW MRSEC, award DMR-0520527, as well 
as awards 0937060 (subaward CIF-146) and ECCS-0547415] and DOE  

9:40am  ET+EM+NS+GR-TuM6  Ferroelectric Field-Effect Transistor 
Behavior in CdS Nanotetrapods, S. Qin, Oak Ridge National Laboratory, 
W. Fu, L. Liu, Chinese Academy of Sciences, T.H. Kim, Oak Ridge 
National Laboratory, S.L. Hellstrom, Stanford University, W. Wang, W. 
Liang, X. Bai, E. Wang, Chinese Academy of Sciences, A.-P. Li, Oak Ridge 
National Laboratory 
Complex nanostructures such as branched semiconductor nanotetrapods are 
promising building blocks for next-generation nanoelectronics. Here we 
report on the electrical transport properties of individual CdS tetrapods in a 
field-effect transistor (FET) configuration with a ferroelectric Ba0.7Sr0.3TiO3 
film as high-к, switchable gate dielectric. A cryogenic four-probe scanning 
tunneling microscopy is used to probe the electrical transport through 
individual nanotetrapods at different temperatures. A p-type field effect is 
observed at room temperature, owing to the enhanced gate capacitance 
coupling. And the reversible remnant polarization of the ferroelectric gate 
dielectric leads to a well-defined nonvolatile memory effect. The field effect 
is shown to originate from the channel tuning in the arm/core/arm junctions 
of nanotetrapods. At low temperature (8.5 K), the nanotetrapod devices 
exhibit a ferroelectric-modulated single-electron transistor behavior. The 
results illustrate how the characteristics of a ferroelectric such as switchable 
polarization and high dielectric constant can be exploited to control the 
functionality of individual 3-dimensional nano-architectures. 
Acknowledgement: The research at the Center for Nanophase Materials 
Sciences is sponsored at Oak Ridge National Laboratory by the Office of 
Basic Energy Sciences, U.S. Department of Energy. The research in Beijing 
is supported by MOST and CAS of China. 
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10:40am  ET+EM+NS+GR-TuM9  Probing Electron-Electron 
Correlations in Quantum Dots Using Transport: Quantum Monte 
Carlo Studies, H.U. Baranger, Duke University INVITED 
Strong electron-electron correlations occur in nanoscale systems in a variety 
of contexts – when electrons form a crystal at low density, for example, or 
in correlations between quantum dots. Nanoscale systems introduce in 
addition an unprecedented level of control over the physical parameters 
determining such correlations. As electron transport is one of the primary 
probes of nanosystems, the effect of e-e correlations on transport is a key 
issue. I shall discuss an example in which we used quantum Monte Carlo 
(QMC) techniques to calculate the conductance: 

Consider a system of four quantum dots designed to study the competition 
between three types of interactions: Heisenberg, Kondo, and Ising. We find 
that the competition produces a rich phase diagram containing two sharp 
features: a quantum phase transition (QPT) between charge-ordered and 
charge-liquid phases, and a dramatic resonance in the charge liquid visible 
in the conductance. The conductance is calculated using a world-line QMC 
method: extrapolation of the imaginary time QMC data to zero frequency 
yields the linear conductance, which is then compared to numerical 
renormalization group results in order to assess its accuracy. The QPT is of 
the Kosterlitz-Thouless type with a discontinuous jump in the conductance 
at the transition. We connect the sharp resonance phenomenon with the 
degeneracy of three levels in the isolated quadruple dot and argue that this 
leads to an emergent symmetry. I shall end by discussing the sensitivity to 
parameter variation and possible experimental realizations in laterally gated 
quantum dots as well as carbon nanotubes. 

This work was done in collaboration with Dong E. Liu and Shailesh 
Chandrasekharan (Duke University).  

11:20am  ET+EM+NS+GR-TuM11  Resistivity Increase due to Electron 
Scattering at Surfaces and Grain Boundaries in Metal Thin Films and 
Nanowires, J.S. Chawla, D. Gall, Rensselaer Poltechnic Institute 
The effect of surface and grain boundary scattering on the resistivity of Cu 
thin films and nanowires is quantified using (i) in situ transport 
measurements on single-crystal, atomically smooth Cu(001) layers, (ii) 
textured Cu(111) layers and patterned Cu wires with independently varying 
grain size, thickness and line width, and (iii) in situ grown interfaces 
including Cu-Ta, Cu-MgO, Cu-SiO2 and Cu-oxygen. In addition, the 
electron surface scattering is also measured in situ for single-crystal 
Ag(001) and TiN(001) layers. These findings are important for the 
development of future generation narrow low-resistivity Cu interconnects 
and TiN metal gates. 

  

Cu(001), Ag(001), and TiN(001) layers with a minimum continuous 
thickness of 4, 5 and 1.8 nm, respectively, are grown by ultra-high vacuum 
magnetron sputter deposition on MgO(001) substrates and are found to be 
atomically smooth single crystals by a combination of x-ray diffraction θ-2θ 
scans, ω-rocking curves, pole figures, reciprocal space mapping, Rutherford 
backscattering, x-ray reflectometry, transmission electron microscopy, and 
in-situ scanning tunneling microscopy. Polycrystalline Cu layers with a 
111-texture are deposited on thermally grown SiO2, with and without Ta 
barrier layer. Subsequent in-situ annealing at 350oC followed by sputter 
etching in Ar plasma yields Cu layers with independently variable thickness 
and grain size. Cu nanowires, 50 to 150 mm long, 70 to 350 nm wide, and 
45 nm thick, are patterned using electron beam lithography and sputter 
etching. 

  

In-situ electron transport measurements at room temperature in vacuum and 
at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent 
with the Fuchs-Sondheimer (FS) model and indicates specular scattering at 
the metal-vacuum boundary with an average specularity parameter p = 0.6 
and 0.4, respectively. In contrast, layers measured ex-situ show completely 
diffuse surface scattering due to sub-monolayer oxidation. Electron 
transport measurements for polycrystalline Cu/Ta layers and wires show a 
~10% and ~11% decrease in resistivity, respectively, when increasing the 
average lateral grain size by factor 2. In-situ deposition of 0.3 to 8 nm thick 
Ta barrier layers on Cu(001) leads to a resistance increase that indicates a 
transition from p = 0.8 to p = 0, independent of the Ta thickness. In-situ 
exposure of Cu(001) layers to O2between 10-3 and 105 Pa-s results in a 
sequential increase, decrease and increase of electrical resistance which is 
attributed to specular surface scattering for clean Cu(001) and for surfaces 
with a complete adsorbed monolayer, but diffuse scattering at partial 
coverage and after chemical oxidation. 

11:40am  ET+EM+NS+GR-TuM12  Control of Contact Formation via 
Electrodeposition on GaAs Nanowires, C. Liu, O. Einabad, S. Watkins, 
K.L. Kavanagh, Simon Fraser University, Canada 
Copper (Cu) electrical contacts to as-grown gallium arsenide (GaAs) 
nanowires have been fabricated via electrodeposition. The nanowires are 
zincblende (111) oriented grown epitaxially on n-type Si-doped 
GaAs(111)B  

substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal 
organic vapour phase epitaxy (MOVPE) reactor. The epitaxial 
electrodeposition process, based on previous work with bulk GaAs 
substrates, consists of a substrate oxide pre-etch in dilute ammonium 
hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu 
or Fe sulphate aqueous electrolyte at 20C. The conductivity of wires was 
controlled via the addition of carbon tetrabromide (CBr4) during growth. 
For nominally undoped GaAs nanowires, we find that Cu or Fe has a 
preference for growth on the gold catalyst avoiding the sidewalls. After 
etching the gold, both metals still preferred to grow only on the tops of the 
nanowire, consistent with the location of the largest electric field. Core-
shell GaAs nanowires with highly conductive carbon-doped shells were 
fabricated via changing the Ga precursors form triethylgallium to 
trimethylgallium for radial growth. Increasing the conductivity of the 
nanowires in this way, not surprisingly; meant that Cu nucleation and 
growth began to occur on the sidewalls as well as on the gold catalyst. 
Finite element simulations will be compared to our electrodeposition results 
towards the calibration of nanowire conductivity. 
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