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2:00pm  EL+AS+EM+MS+PS+TF-ThA1  Applications of Ellipsometry 
in Photovoltaics, D. Levi, National Renewable Energy Laboratory 
 INVITED 
With the growing possibility of anthropomorphic-induced climate change 
there has come increasing concern over energy-related emissions of carbon 
dioxide into the atmosphere. The search for low or no-carbon energy 
sources has intensified. This has lead to a twenty first century gold rush into 
photovoltaics research and technology startups. Although the PV industry 
has maintained its exponential growth rate through the global economic 
downturn, electricity from photovoltaics is still a long ways from economic 
competitiveness with fossil fuel-based electricity sources. The U.S. 
Department of Energy recently announced the Sunshot program, with the 
expressed goal of $1/Watt installed cost for utility scale PV plants by 2017. 
This aggressive goal will require radical advances in new and existing PV 
technologies. 

This presentation will begin with an overview of the major PV technologies 
and the state of the rapidly evolving global photovoltaics industry. 
Photovoltaics is a natural arena for application of spectroscopic 
ellipsometry. Nearly all PV devices are made of multiple thin films of 
semiconductors and transparent conducting oxides. New materials are 
constantly being introduced. Film thickness, optical properties, interfaces, 
electronic properties, and film growth dynamics are all critical aspects of 
these devices and lend themselves to investigation through the use of 
spectroscopic ellipsometry. I will present several case studies of how we 
have applied spectroscopic ellipsometry in our research in photovoltaics at 
the National Renewable Energy Laboratory. 

2:40pm  EL+AS+EM+MS+PS+TF-ThA3  Comparison between Ex Situ 
and Real Time Spectroscopic Ellipsometry Measurements of 
Structurally Graded Si:H Thin Films, N.J. Podraza, University of 
Toledo 
Analysis of spectroscopic ellipsometry measurements of graded thin films 
remains challenging, although analysis procedures and software have 
improved over the past several decades. Practical use of these processes 
remains somewhat time consuming and is often not fully utilized by the 
casual user. In this work, ex situ ellipsometric spectra collected for static 
samples and real time spectroscopic ellipsometry (RTSE) measurements 
collected during film growth will be compared to illustrate differences in 
results arising from the measurement procedures and analysis. As an 
application, consider hydrogenated silicon (Si:H) thin films used for solar 
cells. Devices typically incorporate either amorphous silicon (a-Si:H) or 
“nanocrystalline” silicon (nc-Si:H) absorber layers, although the best 
“nanocrystalline” absorber layers actually consist of mixed-phase 
amorphous+nanocrystalline (a+nc) material. Si:H thin films may initially (i) 
nucleate as amorphous and remain amorphous throughout growth; (ii) 
immediately nucleate as nanocrystallites; or (iii) initially evolve in the 
amorphous regime but nucleate crystallites which subsequently grow 
preferentially over the surrounding amorphous material until nanocrystallite 
coalescence. Analysis of ellipsometric spectra collected for (i) or (ii) simply 
involve using a substrate / bulk film / surface roughness model and complex 
dielectric function spectra (ε = ε1 + iε2) for the bulk material. For (iii), 
RTSE is ideally used to monitor the growth of Si:H that evolves through the 
amorphous, nanocrystalline, and mixed-phase regimes and a virtual 
interface analysis (VIA) procedure is used to extract ε for the amorphous 
and nanocrystalline components, the bulk and surface roughness thicknesses 
versus time, and the nanocrystalline fraction depth profile in the (a+nc) 
growth regime. For (a+nc)-Si:H films only measured with a single static ex 
situ measurement at the end of the deposition, obtaining ε and structural 
parameters of the film become less precise. Specifically, sensitivity to the 
variation in the nanocrystallite fraction with thickness may be lost and 
inaccurate ε for the component materials may be obtained. This works seeks 
to compare the structural and optical properties of (a+nc)-Si:H obtained by 
RTSE and VIA with those from analysis of static ex situ spectra with 
models using different structures, parameterizations in ε, and spectral range 
restrictions. These comparisons will be used to identify appropriate 
structural and dielectric function models to more accurately analyze 

structurally graded thin films under different material and measurement 
circumstances. 

3:00pm  EL+AS+EM+MS+PS+TF-ThA4  Real-Time Spectroscopic 
Ellipsometry of Cu(In,Ga)Se2 Thin Film Deposition: Copper Transition 
in 3-Stage Co-Evaporation Process, D. Attygalle, University of Toledo, V. 
Ranjan, Old Dominion University, P. Aryal, University of Toledo, S. 
Marsillac, Old Dominion University, R.W. Collins, University of Toledo 
With record efficiencies above 20%, Cu(In,Ga)Se2 (CIGS) based solar cells 
have shown the greatest potential for success among the thin film 
photovoltaics technologies. Thermal co-evaporation of individual elements 
has proven to produce extremely high quality CIGS materials, provides a 
high level of flexibility, but also generates greater challenges in process 
optimization. The limitations of existing process monitoring capabilities, 
hence the challenge of correcting process fluctuations in real time, has led 
the industrial community toward more controllable CIGS deposition 
processes. Real time spectroscopic ellipsometry (RTSE) can be used 
successfully in the monitoring of complicated processes -- including CIGS 
film preparation by co-evaporation using precursor films of (Inx,Ga1-x)2Se3. 
Information extracted from RTSE includes the evolution of bulk layer and 
surface roughness layer thicknesses, the composition and phase, as well as 
the layer dielectric functions, all of which can assist in understanding the 
fabrication process and in optimizing solar cells. In this study, the focus is 
on the transitions of Cu-poor to Cu-rich CIGS and vice versa by observing 
the changes in (ψ, Δ) spectra obtained by RTSE. The commonly used 
monitoring method, which involves observing the changes in emissivity of 
the film, largely depends on the apparatus design, the substrate, and the bulk 
layer thickness. When a CIGS film is prepared by exposing a precursor film 
of (Inx,Ga1-x)2Se3 to Cu and Se fluxes, thereby becoming Cu-rich, a semi-
liquid Cu2-xSe phase is believed to form on top of a bulk layer consisting of 
mixed phases of Cu(In,Ga)Se2 and Cu2-xSe [1]. A multilayer optical model, 
with appropriate effective medium approximation layers to represent this 
scenario, has shown good agreement with the observed (ψ, Δ) spectra. Since 
RTSE is highly sensitive to monolayer-level changes in the top-most layer, 
RTSE gives superior sensitivity in Cu-rich to Cu-poor end point detection, 
which occurs when the top Cu2-xSe phase drops below detectable limits. 
Furthermore this method is less affected by the substrate and bulk layer 
thickness. Although careful analysis of RTSE can give a wealth of 
information about CIGS material properties and their evolution, this type of 
end point detection can be successful simply by monitoring the real time 
changes in the (ψ, Δ) spectra. 

[1] J. AbuShama, R. Noufi, Y. Yan, K. Jones, B. Keyes, P. Dippo, M. 
Romero, M. Al-Jassim, J. Alleman, and D.L. Williamson, "Cu(In,Ga)Se2 
Thin-film evolution during growth from (In,Ga)2Se3 precursors", Mat. Res. 
Soc. Symp. Proc. paper H7.2.1, (2001). 

3:40pm  EL+AS+EM+MS+PS+TF-ThA6  Bulk Hetrojunction Solar 
Cell Characterization by Phase Modulated Spectroscopic Ellipsometry, 
K. Uppireddi, L. Yan, HORIBA Scientific 
The blend morphology, phase separation as well as crystallinity of organic 
photovoltaic solar cell are important properties to increase the efficiency. 
The performance of such cells is strongly influenced by blend composition 
and thermal annealing conditions. In this work we demonstrate the use of 
ellipsometry as a powerful and sensitive metrology means of monitoring 
organic solar cell based on the blend of poly(3-hexylthiophene) (P3HT) and 
[6,6]-phenyl C61-buytric acid methyl ester (PCBM). Ellipsometric 
measurements were performed on P3HT/c-Si, PCBM/c-Si and 
P3HT:PCBM/c-Si at an angle of incidence of 70 degree, across the spectral 
range 190 – 2100 nm (0.6-6.5 eV). Two different analysis protocols were 
used to model the P3HT:PCBM blend structure. In the first protocol 
effective medium theory was used to represent the optical constant of layer, 
where as in the second one the blend was treated as one single homogenous 
material. The approach renders investigation of final morphology and 
composition. 

4:00pm  EL+AS+EM+MS+PS+TF-ThA7  In Situ Spectroscopic 
Ellipsometry during Atomic Layer Deposition of Pt, Pd and Ru, N. 
Leick, J.W. Weber, M.J. Weber, A.J.M. Mackus, H.C.M. Knoops, W.M.M. 
Kessels, Eindhoven University of Technology, Netherlands 
The precise thickness control of atomic layer deposition (ALD) and its 
conformal growth make ALD the method of choice for nanometer thin film 
deposition. Platinum-group metals such as Pt, Pd and Ru have many 
applications in the areas of nanoelectronics and catalysis and recently there 
has been considerable interest to deposit films of these materials by ALD. 
Spectroscopic ellipsometry (SE) is a powerful, noninvasive optical 
technique that can be used in situ during ALD to precisely monitor the 
thickness of the films. SE also provides information on the optical and 
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electrical properties of the films which is very relevant for their 
applications. Choi et al. [1] previously investigated the dielectric functions 
of Pt-group metal films with a thickness of ~400 nm as prepared by 
physical vapor deposition. For the aforementioned applications, however, 
the films are required to be much thinner, which leads to differences in film 
morphology as well as to dielectric functions that can be different from 
those of bulk films. In the spectroscopic ellipsometry work to be presented 
in this contribution we have therefore focused on films with thicknesses 
from 5 nm to 35 nm. In situ data was obtained during ALD in the photon 
energy range of 0.7 – 6.5 eV. Using a Kramers-Kronig consistent B-spline 
model to account for the thickness-dependent dielectric functions, we were 
able to obtain accurate ALD growth-per-cycle values for Ru, Pt and Pd 
(1.00 ± 0.06 Å, 0.47 ± 0.04 Å, 0.14 ± 0.02 Å). Furthermore, the 
contributions from free-carriers (Drude term) and interband absorptions 
(Lorentz-oscillator contributions) were investigated by combining the SE 
data with FT-IR reflectance data such that the photon energy range of 0.04 
eV – 6.5 eV was covered. In this range, it was possible to represent each 
film with a unique Drude-Lorentz model although some ambiguities about 
the Lorentz oscillator contributions remained in the case of Ru. It will be 
shown that the extracted thicknesses and electrical resistivities from this 
model are in line with data obtained from X-ray reflectometry and four-
point probe measurements (for example Ru: ρSE ~23 μΩ.cm and ρFPP ~16 
μΩ.cm). Furthermore, in the case of Ru also the influence of the film 
roughness will be addressed. 

[1] Choi et al., Phys. Rev. B 74, 205117 (2006) 

4:20pm  EL+AS+EM+MS+PS+TF-ThA8  Manipulating the Optical 
Properties of Metals: Sculptured Thin Films Coated by Atomic Layer 
Deposition, D. Schmidt, N. Ianno, E. Schubert, M. Schubert, University of 
Nebraska - Lincoln 
The fabrication of three-dimensional metal nanostructures with tailored 
geometry is one of the central challenges of nanotechnology because 
geometrical and material parameters are responsible for the optical, 
electrical, mechanical, chemical, or magnetic properties of such 
nanostructured thin films. Engineered artificial sculptured thin films (STFs) 
with designed anisotropies are potential candidates for applications in 
various fields such as optics, magneto-optics, as well as chemical and 
biological sensing and detection. However, in order to utilize metallic 
nanostructures for novel applications their size-, structure-, and material-
driven physical properties have to be understood and quantified. 

We utilize glancing angle electron-beam deposition, which exploits physical 
atomic-scale shadowing and dynamically varying particle flux azimuth for 
fabrication of three-dimensional highly spatially coherent STFs with 
different morphologies. Subsequently, nanostructures are individually 
covered with a thin conformal coating (cladding) by means of atomic layer 
deposition (ALD). 

We will present the anisotropic optical properties of highly anisotropic 
ALD coated metal STFs determined by generalized spectroscopic 
ellipsometry in the visible and near-infrared spectral region. The analysis of 
our multilayer slanted columnar thin films deposited at glancing angle (θi = 
85°) revealed that such STFs possess monoclinic optical properties, and the 
optical response may be described by an effective medium dielectric 
homogenization approach. It will be discussed how the anisotropic 
Bruggeman effective medium approximation (AB-EMA) allows for 
determination of structural parameters as well as fractions of individual film 
constituents. Furthermore, the AB-EMA analysis reveals that the 
anisotropic dielectric properties of the metal core changes upon deposition 
of a dielectric cladding. 

4:40pm  EL+AS+EM+MS+PS+TF-ThA9  Ellipsometric 
Characterisation of Porous Aluminium Oxide Supports, W. Ogieglo, 
N.E. Benes, H. Wormeester, MESA+ Institute for Nanotechnology, 
University of Twente, Enschede, The Netherlands 
Porous aluminium oxide is widely used as a support material for thin film 
inorganic micro- and mesoporous membranes. Such membranes are used in 
energy-efficient gas separation, pervaporation and nanofiltration processes. 
Ellipsometry can be used to determine material properties of the thin 
membrane films, as well as the penetrant loading [1]. Interpretation of the 
ellipsometry data requires a detailed knowledge of the porous aluminium 
oxide support. This support is made of aluminium oxide particles that are 
sintered together. In between the particles voids are present that amount to 
38% porosity. We have studied the influence of the size of the voids on the 
optical response of the support material. For this study, voids with a 
diameter of around 60, 80 and 160 nm were used. We noted a strong 
decrease of the normal incidence specular reflection with void size and a 
subsequent increase in off specular reflection. In ellipsometry, only a 
limited depolarization of the specular reflected light was noted in the 
wavelength range between 300 and 1750 nm. The angle dependent 
ellipsometry measurements showed that the optical properties of these 

supports can not be obtained from a direct inversion. The reason for this is 
that at the interface the more or less spherical voids are cut, which leads to a 
distribution of openings at the surface, i.e., a substrate with a very rough 
surface. This roughness was modelled with a graded porosity changing from 
38% in the bulk to 75% at the outer surface. This measured variation in 
porosity is very similar to the cumulative height distribution of the surface 
layer obtained from AFM. The validity of this graded porosity model was 
verified from the analysis of a sample with a thin polysulfone (PSU) layer 
deposited on the support. The PSU layer partly fills the open pores at the 
surface. This results in an interface with a graded variation in aluminium 
oxide, void and PSU. 

The proper treatment of the surface layer also provides the optical 
properties of the porous aluminium oxide bulk material itself. These optical 
properties can in a limited wavelength range be modelled with 
Bruggeman’s effective medium approximation. As a consequence of the 
size of the inclusions, their diameter is no longer negligible with respect to 
the wavelength of light in the UV part of the spectrum. For the material 
with the largest pore size, also a large part of the visible range has to be 
excluded. A more elaborate approach than the standard effective medium 
approach has to be used in this case.  

[1] H. Wormeester, N.E. Benes, G.I. Spijksma, H. Verweij and B. Poelsema  

Thin Solid Films 455-456, 747-751 (2004) 

5:00pm  EL+AS+EM+MS+PS+TF-ThA10  Optical Properties and 
Structure of Vanadium Oxide Thin Films, M.A. Motyka, M.W. Horn, 
Pennsylvania State University, N.J. Podraza, University of Toledo 
Vanadium oxide (VOx) thin films are common materials used as imaging 
layers in uncooled microbolometer based thermal imaging devices. These 
films are used in this application largely due to the controllable resistivity of 
the film (ρ), the high temperature coefficient of resistance (TCR), and the 
low electrical noise. One of the main difficulties of this material system 
relates to the multiple valence states of vanadium, each of which results in 
materials with different electrical properties. Bolometer quality VOx may 
consist of a composite of nanocrystalline face centered cubic (FCC) VO 
phase and amorphous materials. The thin film oxygen content via 
Rutherford back scattering (RBS) has suggested that the typical ratio V:O 
should be near 1:1.7-2.0, significantly higher than the stability window of 
the FCC phase. This off-stoichiometry ratio suggests that the amorphous 
material is a mixture of higher oxygen valence states similar to V2O5 and 
VO2. The higher quality VOx thin film material also has been observed via 
transmission electron microscopy (TEM) to contain VO/V2O3 nano-twin 
crystalline domains. The presence of each of these phases impacts the 
electrical and optical properties of the resulting VOx film. Films with 
various oxygen contents and structures were studied with spectroscopic 
ellipsometry (SE) over a spectral range of 0.05 to 5.15 eV using a 
multichannel dual rotating compensator near-ultraviolet to near infrared 
instrument in conjunction with Fourier transform infrared spectroscopic 
ellipsometry (FTIR-SE). Thus, the complex dielectric function spectra (ε = 
ε1 + iε2) can be obtained for these materials over the full spectral range. 
Differences in ε due to variations in the film structure are observed as 
functions of processing, indicating that SE is a means of probing the 
material composition and structure. Specifically, ε are compared for various 
film composites fabricated by unbiased pulsed DC magnetron sputtering as 
well as composite films prepared by reactive ion beam sputtering and 
pulsed DC magnetron sputtering with a substrate bias. The microstructure 
and ε are correlated with films exhibiting the desirable device electrical 
properties. In situ real time spectroscopic ellipsometry (RTSE) has shown 
that environmental conditions alter the as-deposited VOx thin films grown 
via pulsed DC-magnetron reactive sputtering of a metallic vanadium target. 
In order to prevent undesired atmospheric effects to the thin film, it is a 
common practice to encapsulate the thin film with a more environmentally 
stable material. In this study, the material chosen was SiO2 grown in the 
same deposition chamber, pre-atmospheric exposure, via rf sputtering. 

5:20pm  EL+AS+EM+MS+PS+TF-ThA11  Sensitivity of Dielectric 
Properties of Vanadium Dioxide Thin Films to Growth Conditions, 
D.W. Ferrara, R.E. Marvel, J. Nag, R.F. Haglund, Vanderbilt University 
Vanadium dioxide (VO2) is a strongly-correlated electron material with a 
well-known semiconductor-to-metal transition (SMT) that can be induced 
thermally (Tc = 68oC), optically, or electrically. Recently, VO2 films have 
attracted attention as a component in active metamaterials, especially in 
conjunction with metal nanostructures. Since these structures are highly 
sensitive to the dielectric properties of the embedding material, the SMT of 
VO2 can be used to tune the optical response of the structure. Accurately 
modeling the behavior of these structures requires detailed knowledge of 
the dielectric function of VO2 as it undergoes the SMT; however, previous 
measurements of the optical constants of VO2 reveal significant variations 
between experiments.  
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To understand systematic variations due to growth conditions, films of VO2 
were deposited on either silicon, glass, or sapphire substrates by pulsed 
laser ablation of vanadium metal targets in 10 mTorr oxygen (O2) 
background gas, followed by annealing at 450oC in 250 mTorr of O2. 
Anneal times were varied from 30 to 90 depending on film thickness; 
deposition thickness was varied from 20 nm to 200 nm. For each sample, 
temperature-dependent spectroscopic ellipsometry measurements at optical 
and near-infrared wavelengths were conducted to determine the dependence 
of the optical constants on film thickness, substrate and crystallinity, and 
temperature. 

Bruggeman and Maxwell-Garnett effective-medium formulations were used 
to account for three constituent materials: semiconducting VO2, metallic 
VO2, and vanadium pentoxide (V2O5). The effective dielectric functions 
were modeled using Lorentz and Tauc-Lorentz oscillators. Our results show 
that the contribution of V2O5 to the effective dielectric function increases 
with annealing time, consistent with previous studies. The results are also 
substantiated using Rutherford backscattering, X-ray photoelectron 
spectroscopy and X-ray diffraction. 



Author Index 4 

Authors Index 
Bold page numbers indicate the presenter 

—	A	— 
Aryal, P.: EL+AS+EM+MS+PS+TF-ThA4, 1 
Attygalle, D.: EL+AS+EM+MS+PS+TF-ThA4, 1 

—	B	— 
Benes, N.E.: EL+AS+EM+MS+PS+TF-ThA9, 2 

—	C	— 
Collins, R.W.: EL+AS+EM+MS+PS+TF-ThA4, 1 

—	F	— 
Ferrara, D.W.: EL+AS+EM+MS+PS+TF-ThA11, 

2 

—	H	— 
Haglund, R.F.: EL+AS+EM+MS+PS+TF-ThA11, 

2 
Horn, M.W.: EL+AS+EM+MS+PS+TF-ThA10, 2 

—	I	— 
Ianno, N.: EL+AS+EM+MS+PS+TF-ThA8, 2 

—	K	— 
Kessels, W.M.M.: EL+AS+EM+MS+PS+TF-

ThA7, 1 
Knoops, H.C.M.: EL+AS+EM+MS+PS+TF-ThA7, 

1 

—	L	— 
Leick, N.: EL+AS+EM+MS+PS+TF-ThA7, 1 
Levi, D.: EL+AS+EM+MS+PS+TF-ThA1, 1 

—	M	— 
Mackus, A.J.M.: EL+AS+EM+MS+PS+TF-ThA7, 

1 
Marsillac, S.: EL+AS+EM+MS+PS+TF-ThA4, 1 
Marvel, R.E.: EL+AS+EM+MS+PS+TF-ThA11, 2 
Motyka, M.A.: EL+AS+EM+MS+PS+TF-ThA10, 

2 

—	N	— 
Nag, J.: EL+AS+EM+MS+PS+TF-ThA11, 2 

—	O	— 
Ogieglo, W.: EL+AS+EM+MS+PS+TF-ThA9, 2 

—	P	— 
Podraza, N.J.: EL+AS+EM+MS+PS+TF-ThA10, 

2; EL+AS+EM+MS+PS+TF-ThA3, 1 

—	R	— 
Ranjan, V.: EL+AS+EM+MS+PS+TF-ThA4, 1 

—	S	— 
Schmidt, D.: EL+AS+EM+MS+PS+TF-ThA8, 2 
Schubert, E.: EL+AS+EM+MS+PS+TF-ThA8, 2 
Schubert, M.: EL+AS+EM+MS+PS+TF-ThA8, 2 

—	U	— 
Uppireddi, K.: EL+AS+EM+MS+PS+TF-ThA6, 1 

—	W	— 
Weber, J.W.: EL+AS+EM+MS+PS+TF-ThA7, 1 
Weber, M.J.: EL+AS+EM+MS+PS+TF-ThA7, 1 
Wormeester, H.: EL+AS+EM+MS+PS+TF-ThA9, 

2 

—	Y	— 
Yan, L.: EL+AS+EM+MS+PS+TF-ThA6, 1 

 


