AVS 58th Annual International Symposium and Exhibition
    Thin Film Division Friday Sessions
       Session TF-FrM

Paper TF-FrM2
Understanding the Role of Hydrogen Impurity Scattering in Manganese Thin Films on the Si(001) Surface

Friday, November 4, 2011, 8:40 am, Room 110

Session: Thin Films: Growth and Characterization II
Presenter: Andrew Stollenwerk, University of Northern Iowa
Authors: A.J. Stollenwerk, University of Northern Iowa
B.J. Friend, University of Northern Iowa
Correspondent: Click to Email

Interest in energy production via hydrogen has been increasing due to the fact that it does not emit harmful greenhouse gases associated with fossil fuels. Unfortunately, hydrogen is an explosive gas that is both colorless and odorless. This will make hydrogen sensors an important piece of safety equipment in a hydrogen based economy. Diffusion of hydrogen to the Mn/Si interface is believed to have an amphoteric effect on the interface characteristics making it a possible hydrogen sensor. This motivates a need to better understand electron transport properties through Mn/Si Schottky diodes. We performed ballistic electron emission microscopy (BEEM) on Mn/Si(001) Schottky diodes to study hot electron transport properties through this system. Samples were fabricated using electron-beam deposition of Mn onto n-type Si(001) with thickness ranging from 10 to 40 Å. Scattering in the Mn films as function of energy has been measured and compared to results obtained on Au/Si(001) Schottky diodes. Schottky heights on these samples were determined from the corresponding BEEM spectra using the Bell-Kaiser model. Future plans include introducing an atmosphere consisting of varying amounts of hydrogen and measuring the resulting effects on hot electron transport in the Mn film as well as the Schottky height. Should electron scattering or the Schottky height be affected by the presence of hydrogen, this system may prove useful as an inexpensive hydrogen sensor.