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2:00pm  SS1+PS+TF+AS+NS-TuA1  Growth and Purification of 
Nanostructures Deposited by Electron Beam Irradiation: A Surface 
Science Perspective, H. Fairbrother, J. Wnuk, J. Gorham, S. Rosenberg, 
Johns Hopkins University, T. Madey, Rutgers, W.F. van Dorp, K. Hagen, 
Delft University of Technology, The Netherlands 
Focused electron beam induced processing (FEBIP) of volatile 
organometallic precursors has emerged as an effective and versatile method 
of fabricating metal-containing nanostructures. However, to improve the 
materials properties of FEBIP nanostructures, provide information that can 
aid in the rational design of new precursors and improve the modeling of 
the FEBIP process it is necessary to better understand the molecular level 
processes associated with the electron stimulated decomposition of 
organometallic precursors. To address this issue, we have employed a 
UHV-surface science approach to study the electron induced reactions of 
dimethyl(acetylacetonate) gold(III) (Au(acac)Me2), a common precursor 
used for Au deposition in FEBIP, adsorbed on solid substrates. Surface 
reactions, reaction kinetics and gas phase products were studied using 
incident electrons in the energy regime between 40-1500 eV, using a 
combination of XPS, RAIRS and MS. XPS data indicate that electron 
irradiation of AuIII(acac)Me2 is accompanied by the reduction of AuIII to a 
metallic Au0 species embedded in a carbon matrix while MS reveals the 
concomitant evolution of methane, ethane and hydrogen. The electron 
stimulated decomposition of the AuIII(acac)Me2 precursor can be described 
by a first-order decay process with respect to the surface coverage, with a 
rate constant that is proportional to the electron flux and a total reaction 
cross-section of ≈3.6 x 10-16 cm2 at an incident electron energy of 520 eV. 
As a function of the incident electron energy, the maximum deposition yield 
was observed at ≈175 eV. Our results are consistent with the idea that those 
carbon atoms removed as volatile species from the AuIII(acac)Me2 precursor 
during FEBIP are associated with methyl groups attached to the central Au 
atom. In related studies we also studied the effects of atomic oxygen and 
atomic hydrogen on Au-containing carbonaceous films deposited by 
electron beam irradiation of Au(acac)Me2, as a potential route to purify 
FEBIP deposits. Atomic oxygen was found to be the more effective of the 
two radical treatments in removing carbon, although a surface layer of gold 
oxide was formed. Subsequent exposure of this overlayer to atomic 
hydrogen rapidly removed the oxide, resulting in a pure Au film. AFM 
analysis of FEBIP deposits before and after radical treatment support the 
idea that carbon abatement is accompanied by a decrease in particle size. 

2:20pm  SS1+PS+TF+AS+NS-TuA2  Surface Morphology Control and 
3D Structure Development with Cryogenic Assisted Electron Beam-
Induced-Deposition, M. Bresin, K.A. Dunn, University at Albany SUNY 
Electron beam-induced-deposition (EBID) of platinum-containing materials 
was performed at cryogenic temperatures. Deposit morphology, 
microstructure and nanostructure have been characterized by scanning and 
transmission electron microscopy (SEM and TEM), and shown to be 
controllable by the electron fluence used for EBID. 3D structures were 
developed using a multilayer deposition method, facilitating the creation of 
hanging, suspended or incorporated-gap structures. 

  

Experiments were performed using an FEI Nova 600 Nanolab dual beam 
system with a LN2 cryogenic stage, enabling substrate temperatures of -
155±5oC. A gaseous platinum precursor (MeCpPtMe3) was first condensed 
onto the cooled substrate using a capillary-style gas injection system (GIS). 
Condensate thicknesses between 100nm-3mm were produced by adjusting 
the GIS-substrate gap and precursor crucible temperature. Next, gas flow 
was terminated and the condensate was irradiated with an electron beam to 
induce precursor decomposition. When the substrate was returned to room 
temperature, any unreacted precursor desorbed and was removed by the 
pumping system, while irradiated regions showed clear evidence of 
successful deposition. The morphology of the deposited material depended 
on exact deposition conditions, and exhibited several distinct types absent 
from deposits made by conventional (room temperature) EBID. 

  

3D structures were developed with a multilayer deposition method. In this 
method, multiple layers were used to take advantage of the electron 
penetration depth within the condensate, through which the depth of 

deposition could be controlled. An initial layer was first condensed and a 
region was deposited with the electron beam to act as a substrate-anchoring 
site. A second condensed layer was then applied such that electrons could 
only penetrate to the top of the initial condensed layer. The electron beam 
was then shifted, to deposit a section partially over the anchoring region (in 
the initial layer) with the remainder over unreacted area. After reheating, 
part of the second deposit was found to have adhered to the anchoring 
region, while the rest hung over vacuum. Using similar process, structures 
were also developed to create embedded gaps or tunnels. 

  

Taken together, these observations have important implications for the 
creation of arbitrarily large or complex structures previously untenable by 
EBID fabrication. The growth mechanism and potential applications will be 
discussed, from nanotechnology to osteointegration. 

2:40pm  SS1+PS+TF+AS+NS-TuA3  Nanoscale Patterning and 
Graphene Film Deposition on Si using Low-energy Electron Beams, 
T.M. Orlando, D. Sokolov, D. Oh, K. Shepperd, Georgia Institute of 
Technology INVITED 
The physics and chemistry associated with desorption induced by electronic 
transitions, particularly electron stimulated desorption (ESD), is the basis 
for many electron-beam induced processes in materials growth, etching, and 
lithography. We have demonstrated experimentally and theoretically that 
the total ESD yield of adsorbates can be a function of the incident low-
energy electron-beam direction. We refer to this phenomena as Diffraction 
in Electron Stimulated Desorption (DESD). We have also explored three 
graphene growth strategies which utilize low-energy electron beams and 
non-thermal reactions. The first uses electron beam irradiation in 
conjunction with chemical vapor deposition techniques to grow graphene 
directly on Si substrates. This approach utilizes unsaturated hydrocarbon 
precursor molecules and can be carried out at relatively low temperatures. 
The second involves electron-stimulated removal of oxygen and organic 
fragments from graphene-oxide flakes positioned on patterned Si substrates. 
This may allow for damage-free reduction of graphene-oxide to graphene. 
The third involves electron-beam removal of defects from graphene 
expitaxially grown from SiC(0001) substrates.  

4:00pm  SS1+PS+TF+AS+NS-TuA7  A Study of the Nucleation of 
Focused Electron Beam Induced Deposits: Growth Behavior on the 
Nanometer Scale, W.F. van Dorp, Delft University of Technology, The 
Netherlands, J.B. Wagner, T.W. Hansen, R.E. Dunin-Borkowski, Danish 
Technical University, Denmark, K. Hagen, Delft University of Technology, 
The Netherlands 
Focused electron beam-induced deposition (FEBID) is a technique where 
adsorbed precursor molecules are dissociated by a focused beam of 
electrons to define metallic or semi-conducting patterns. Control over the 
process has developed to the extent that the amount of deposited material 
can be controlled nearly to the level of single molecules. Currently, the 
highest resolution that is reported is 0.7 nm [1] using the precursor W(CO)6. 
At this scale, deposits contain no more than a few molecules on average. 
Our ultimate goal is to develop the ability to deposit single precursor 
molecules in a consistent manner.  

We perform our FEBID experiments in environmental scanning 
transmission electron microscopes (E-STEM) with a beam energy of 200 
keV and a 0.2 nm probe. The annular dark field (ADF) signal is used for the 
imaging of the deposits. By recording the ADF signal during deposit growth 
we are able to monitor the growth process in situ. Thin, electron transparent 
graphite is used as a substrate and typical precursor gas pressures at the 
sample during the deposition were 10-3 to 10-5 Torr. 

In the present study we used Me3PtMeCp, a Pt-precursor that is often used 
in FEBID experiments [2]. To improve on the currently achieved resolution, 
it is important to study the nucleation stage of deposits. When using a 
graphite substrate we found that there is a significance difference in 
deposition behavior between the W(CO)6 and Me3PtMeCp precursors. 
Where the typical growth behavior for W(CO)6 is to form nm-sized or even 
sub-nm sized deposits, the deposits fabricated from Me3PtMeCp are a few 
nanometers in diameter and consist of individual sub-nm sized grains. We 
report on our study of this difference in growth behavior and strategies to 
increase the writing resolution. 

[1] W.F. van Dorp, C.W. Hagen, P.A. Crozier, P. Kruit, Nanotechnology 19 
(2008) 225305  

[2] A. Botman, M. Hesselberth, J.J.L. Mulders, Microelectron Eng 85 
(2008) 1139  
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4:20pm  SS1+PS+TF+AS+NS-TuA8  Direct Local Deposition of High-
Purity Pt Nanostructures by Combining EBID and ALD, A.J.M. 
Mackus, Eindhoven University of Technology, the Netherlands, H.J.J.L. 
Mulders, A.F. de Jong, FEI Electron Optics, the Netherlands, M.C.M. van 
de Sanden, W.M.M. Kessels, Eindhoven University of Technology, the 
Netherlands 
Due to its ability to directly deposit nanostructures with sub-10 nm lateral 
dimensions electron beam induced deposition (EBID) has the potential to 
become a key nanomanufacturing technology. The technique suffers 
however from incomplete decomposition of the precursor gas and 
consequently a low material purity. Platinum EBID yields typically only a 
purity of ~15 at.% and a resistivity value orders of magnitude higher than 
bulk resistivity which reduces the functionality of the material for most 
nanoprototyping applications such as adding electrical contacts to 
nanodevices. In this contribution we propose a novel approach for the 
fabrication of high-purity Pt nanostructures based on a combination of the 
patterning capability of EBID and the high material quality obtained by 
atomic layer deposition (ALD). The latter technique yields submonolayer 
control of the film thickness and in the case of Pt ALD high purity 
(~100%), low resistivity (13±1 µΩcm) films [1]. The developed approach 
comprises seed layer deposition by EBID and area-selective ALD growth. 
For specific conditions the thermal ALD process of Pt (MeCpPtMe3 
precursor, O2 gas) was found to start selectively on an EBID seed layer with 
a thickness equivalent to one monolayer Pt. It was established that the 
deposits have a uniform thickness and a high purity value (>93%), whereas 
the method has the potential to achieve sub-10 nm lateral dimensions. In 
addition to the approach and the material properties the underlying reaction 
mechanism of the (area-selective) Pt ALD process will be discussed, 
including aspects such as the role of dissociative chemisorption of O2 
molecules on Pt and the formation of H2O, CO2, and CH4, reaction products.  

[1] H.C.M. Knoops, A.J.M. Mackus, M.E. Donders, M.C.M. van de 
Sanden, P.H.L. Notten, and W.M.M. Kessels, Electrochem. Solid-Sate Lett. 
12, G34 (2009) 

4:40pm  SS1+PS+TF+AS+NS-TuA9  Anionic Surface Processes 
Induced by Low-Energy Electrons, P.A. Rowntree, University of Guelph, 
Canada INVITED 
The historical development of surface chemistry has largely been based on 
the use of free-energy-driven processes; an enormous volume of literature 
exists that details the search for chemical control over these processes using 
the classical parameters of temperature, surface composition and reagents. 
However, as the interest in controlling the processes grows, and the need to 
produce structurally resolved reactive systems increases, alternative non-
thermal mechanisms are increasingly being explored in order to drive the 
interfacial processes into reaction channels chosen by the needs of the 
operator instead of the principles of thermochemistry. Our specific interest 
is in the control of surface processes using low-energy electrons as specialty 
‘reagents’ that can be delivered to surfaces in a highly controlled manner, 
and interact with surface species according to understandable and 
reproducible mechanisms. The overall goal is to understand and manipulate 
these mechanisms to selectively interact with target molecules of our 
choosing to modify surfaces according to our needs.  

This presentation will focus on two aspects of this ‘manipulative’ approach 
to surface chemistry. The first is our recent development of ways to 
selectively control where incident electrons interact with the organic 
monolayers that are deposited on Au(111) surfaces. These chemically 
homogeneous monolayers have a highly uniform electronic structure along 
the length of the chains, such that it is normally not possible to strongly 
enhance the dissociation probabilities at any given site. We have found that 
it is possible to selectively enhance the rupture of C-H bonds at the methyl 
terminations of these films by coupling the incident electron flux with 
anionic excitonic states of rare gas solids that are adsorbed on these methyl 
terminations. The energy+charge transfer process that leads to bond rupture 
is extremely sensitive to the incident energy as well as the chemical nature 
of the target species, thus enhancing the selectivity of the local 
modifications to the organic surface. A second set of processes will be 
discussed that involves the electron-induced decarbonylation of metal 
carbonyls adsorbed on organic surfaces to produce atomic metal deposits. 
We have shown that low-energy electrons can induce surface 
polymerization reactions in Fe(CO)5 films that lead to apparent CO-
elimination cross-sections greater than 1 nm2. This strong coupling to 
dissociative processes allows us to develop thin metal overlayers without 
the substrate damage that is usually associated with using thermal 
evaporation or sputtering processes. 

5:20pm  SS1+PS+TF+AS+NS-TuA11  Condensed Phase Electron-
Stimulated Reactions: Desorbed Anions and Retained Radicals, Y. 
Shyur, J. Wang, S. Lau, E. Krupczak, C. Arumainayagam, Wellesley 
College 
Studies of low-energy electron-induced processes in nanoscale thin films 
serve to elucidate the pivotal role that low-energy electron-induced 
reactions play in high-energy radiation-induced chemical reactions in 
condensed matter. While electron-stimulated desorption (ESD) experiments 
conducted during irradiation have yielded vital information relevant to 
primary or initial electron-induced processes, analyzing the products 
following low-energy electron irradiation can provide new insights into 
radiation chemistry. We have used post-irradiation temperature-
programmed desorption to identify labile radiolysis products as 
demonstrated by the first identification of methoxymethanol as a reaction 
product of methanol (CH3OH) radiolysis. Although low-energy electron-
induced oligomerization reactions have been previously reported for 
molecules such as thiophene and cyclopropane, our electon-induced studies 
of CCl4 represent the first study to specifically identify the products of such 
reactions, demonstrating the utility of post–irradiation temperature 
programmed desorption experiments to study the radiation chemistry of 
condensed matter. Results of post-irradiation studies have been used not 
only to determine the identity of radiolysis products, but also to determine 
the dynamics of electron-induced reactions. By comparing our post-
irradiation results to previous electron stimulated desorption studies of 
anion production during irradiation of condensed CF2Cl2 and CF3I, we 
examine the relationship between desorbed anions and retained radicals 
during dissociative electron attachment in the condensed phase. 

5:40pm  SS1+PS+TF+AS+NS-TuA12  Cluster-induced Desorption and 
Ionization of Biomolecules for Application in Mass Spectrometry, M. 
Dürr, Hochschule Esslingen, Germany, C. Gebhardt, A. Tomsic, H. 
Schröder, K. Kompa, MPI für Quantenoptik, Germany 
Mass spectrometry of biological macromolecules has developed into a key 
technology for fast routine analysis in biotechnology. A critical issue is the 
efficient transfer of non-volatile biomolecules out of their sample solution 
into the gas phase in combination with their concomitant ionization. Here 
we show that a beam of neutral molecular clusters consisting of 103 to 104 
SO2 molecules can be used for the desorption and ionization of 
biomolecules. Cluster impact on arbitrary surfaces pre-treated with 
biomolecules efficiently creates cold, desolvated, gas phase biomolecular 
ions as large as 6000 u without any need for preparation of the biomolecules 
in a special matrix or post-ionization after desorption. Since the cluster 
provides not only the energy for the desorption process but also a transient 
matrix during the process, the molecules are found to be desorbed without 
any fragmentation.  

As revealed by means of molecular dynamics simulations, high kinetic 
temperatures in the order of a few thousand Kelvin are reached during 
cluster impact on the surface. However, these extreme conditions prevail 
only for some picoseconds, since shattering of the initial cluster leads to 
very fast energy dissipation. Already after 20 ps, the SO2 cluster fragments 
have reached a temperature colder than the original temperature of the 
adsorbates. This fast energy dissipation excludes efficient energy transfer 
into the vibrational degrees of freedom relevant for the cleavage of the 
relatively large biomolecules and thus allows for their soft, fragmentation-
free desorption. 
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