Tuesday Morning, October 21, 2008

Synchrotron-based Spectroscopy and Spectro-Microscopy Topical Conference Room: 310 - Session SY+SS+BI-TuM

Synchrotron-based Spectroscopy and Spectro-Microscopy

Moderator: M. Grunze, University of Heidelberg, Germany

8:00am SY+SS+BI-TuM1 X-ray Studies of Hydrogen Bonding in Water; the Liquid Phase and on Surfaces, A.R. Nilsson, SSRL/Stanford INVITED University and Stockholm University, Sweden Water and its ability to form Hydrogen bonding (H-bonding) is the basis for all life on the planet earth. The understanding of water adsorption, wetting and reactions at solid surfaces is of importance for many different areas of science such as biomaterials, catalysis, electrochemistry, corrosion, environmental science and technologies related to hydrogen as a future energy carrier. There are recent experiments that have raised the question whether we really understand the nature of H-bonding and the structure of liquid water. We have recently devoted a major effort to the development of x-ray spectroscopy measurements of water in the different aggregation forms and adsorbed on surfaces. Using x-ray absorption spectroscopy (XAS), x-ray Raman scattering (XRS), x-ray emission spectroscopy (XES), small angle x-ray scattering (SAXS) and x-ray diffraction together with density functional theory (DFT) calculations we have demonstrated the appearance of specific spectral features that can be related to two different types of water species in the liquid, tetrahedral water and asymmetric Hbond configurations. The latter species dominates the liquid. I will address fundamental questions regarding geometric structure, electronic structure, nature of surface chemical and hydrogen bonding and reactivity of water on surfaces. The connection between studies performed at both UHV and ambient conditions will be emphasized. Several examples of different water adsorption system will be illustrated such as Pt(111), Ru(001), Cu(110), Cu(111), TiO₂, Fe₂O₃ and MgO.

8:40am SY+SS+BI-TuM3 Soft X-ray Spectroscopy of Liquids and Liquid-Solid Interfaces, C. Heske, University of Nevada Las Vegas INVITED

With the advent of high-brightness synchrotron radiation in the soft x-ray regime it has become possible to investigate vacuum-incompatible sample systems such as liquids using suitably designed in-situ cells. In such cells, thin membranes (e.g., made of SiC, SiN_x, or polyimide) separate nonvacuum sample environments from the ultra-high vacuum necessary for soft x-ray synchrotron beamlines. If the membranes are thin (e.g., on the order of 100 nanometer to 1 micrometer), it is possible to transmit soft x-rays with sufficient intensity for spectroscopic experiments. Two experimental techniques are of particular interest, namely x-ray absorption spectroscopy (XAS) to study unoccupied electronic states and x-ray emission spectroscopy (XES) to investigate the occupied electronic levels. The combination of the two approaches, i.e., the collection of XES spectra at variable resonant excitation (resonant inelastic soft x-ray scattering - RIXS), gives unprecedented insight into the electronic structure of hitherto inaccessible samples, such as liquids and liquid-solid interfaces. In this presentation, the experimental requirements for such studies will be discussed and it will be demonstrated how XAS, XES, and RIXS can give unique insights into the electronic, chemical, and dynamic properties of liquids (in particular water) and liquid-solid interfaces.

9:20am SY+SS+BI-TuM5 High-Resolution X-Ray Photoelectron Spectroscopy as a Versatile Tool for the Characterization of Monomolecular Self-Assembled Films, M. Zharnikov, Universität Heidelberg, Germany INVITED

Self-assembled monolayers (SAMs) have recently attracted considerable interest in physics, chemistry and biology due to their ability to control wetting, adhesion, lubrication and corrosion on surfaces and interfaces and their capability to become building blocks of future electronic devices. All the above applications rely on deep understanding of properties of these systems and precise knowledge of their structure. We will review recent progress in characterization of SAMs with a chalcogen headgroup on coinage metal and semiconductor substrates by high-resolution X-ray photoelectron spectroscopy (HRXPS). As compared to conventional XPS with a laboratory X-ray source, HRXPS, which usually takes advantage of both ultimate energy resolution and tunable photon energy (synchrotron), is capable to deliver additional information on the objects of interest, including screening phenomena, homogeneity of the bonding configurations, charge transfer upon the headgroup-substrate bond formation, etc. Also, this technique is very useful when dealing with systems exhibiting a large diversity of chemical species such as, e.g., SAMs on GaAs substrates. A variety of examples will be provided. Further, it will be shown that photoemission in SAMs cannot always be described within the standard theoretical framework, which have important implications for both understanding of the XPS/HRXPS spectra of the relevant SAM-derived systems and practical applications.

10:40am SY+SS+BI-TuM9 Chemical Imaging and Spectroscopy at Sufficiently High Spatial Resolution to Uncover Functions of Nanoscale Phenomena, *M. Kiskinova*, Sincrotrone Trieste, Italy INVITED

The complementary capabilities of different microscopy approaches in terms of imaging, spectroscopy, spatial and time resolution are strongly requested by the multi-disciplinary research programs at the synchrotron facilities and have motivated continuous investments in development of instrumentation for imaging with spectroscopic analysis. The major part of the lecture will be focused on the potential of modern x-ray photoelectron microscopes in chemical imaging and micro-spot photoelectron spectroscopy.1 Among the selected research topics, as representative examples are (i) addressing the surface properties of the individual C and oxide nanostructures and supported catalyst micro and nano-particles (ii) mass transport driven self-reorganization processes which can introduce lateral heterogeneity in the composition and reactive properties of surfaces (iii) quantum-size effects on the local chemical reactivity measured for ultrathin films with spatially varying thickness. The final part of the lecture will briefly illustrate the most recent achievements in combining the potential of soft x-ray transmission microscopy with multiple contrast approaches and fluorescence analysis.

Günther, S., Kaulich B., Gregoratti L., Kiskinova, M.: Prog. Surf. Sci. 70, 187, 2002.

11:20am **SY+SS+BI-TuM11 Hard X-ray Photoelectron Spectroscopy up to 15 keV: State-of-the-Art and Recent Results**, *M. Merkel*, FOCUS GmbH, Germany, *J. Rubio-Zuazo*, *G.R. Castro*, SpLine Spanish CRG Beamline at the European Synchrotron Radiation Facility, France, *M. Escher*, FOCUS GmbH, Germany

Hard X-ray photoelectron spectroscopy (HAXPES) gains momentum as a new non-destructive nanoanalytical method more and more. On one hand the request for non destructive and bulk sensitive analysis methods is highly visible. On the other hand the availability of a number of suitable high energy synchrotron beam lines allows for the realization of such dedicated instrumentations. A new electron analyzer that fulfils the requirements imposed by the XRD and HAXPES techniques is presented. The analyzer of the cylindrical sector type¹ in use (FOCUS HV CSA) is a very compact and at the same time highly efficient approach for this kind of electron spectroscopy. It is capable to handle kinetic energies up to 15 keV down to a few eV with the same analyzer setup and power supply.² The recent implementation of a 2D event counting detector for parallel data acquisition will be described also. By means of this detector the measurement speed is increased to overcome the restrictions imposed by the reduced sample cross sections and analyser transmission at high kinetic energies. Buried layers, as they are common for a number of nanotechnological applications, are invisible with most of the known non destructive analytical methods. To demonstrate the potential of electron spectroscopy at really high kinetic energies we used thin Au layers deposited onto a Cu substrate as a model system for bulk sensitive photoemission. The comparison of the Cu3s and Au5s peaks show the energy dependence of the depth information. It is seen that substrate properties can be probed for kinetic energies ≥ 10 keV effectively. By means of such measurements we derived the energy dependence of the effective attenuation length (EAL) for electrons in Au also. For this purpose core level spectra of different energies are taken for different film thicknesses. The extracted EAL of Au shows an energy dependence of (Ekin)^{0.622} what is in good agreement with literature data. This work was supported through the Spanish Ministry of Education and Science (MEC), grants nos. FAP-2001-2166 and MAT1999-0241-C01 and the German Ministry of Education and Research (BMBF) under grant no. FKZ 13N9033.

¹ Risley J.S, Rev. Sci. Instrum. 43 (1971) 95; Sar-El H.Z, Rev. Sci. Instrum. 38 (1967) 1210; Sar-El H.Z, Rev. Sci. Instrum. 41 (1970) 561.

² J.R.Rubio-Zuazo, M.Escher, M.Merkel and G.R.Castro, J. of Phys. Conf. Ser. 100 (2008).

11:40am SY+SS+BI-TuM12 A Comparative Study of Interface Formation for Ca/PDHFV and Ca/PHF by Synchrotron Radiation Photoemission, Y.X. Guo, W. Zhao, X.F. Feng, L. Zhang, W.H. Zhang, J.F. Zhu, University of Science and Technology of China

Interfaces of metal/polyfluorene have attracted much research interests in both technological and scientific point of view. Polyfluorene-based light emitting devices have been proved to have a high luminescene effciency. However, the occurrence of gap states in most cases will affect the luminescence properties of organic materials. In this paper, the interface formation and energy level alighment for Ca/PDHFV and Ca/PHF have been studied by synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The results imply that the chemical reaction at the interface of Ca/PDHFV is stronger than that of Ca/PHF. However, no gap states at the Ca/PDHFV interface can be observed, which is different from the observations on Ca/PHF. Both of these two interfaces display low electron injection barrier. Our findings suggest that the gap states can be removed at metal/polyfluorene interface by introducing vinylene units into polyfluorene, which may provide a new way to eliminate the gap states.

Authors Index Bold page numbers indicate the presenter

— C — Castro, G.R.: SY+SS+BI-TuM11, 1 — E — Escher, M.: SY+SS+BI-TuM11, 1 — F — Feng, X.F.: SY+SS+BI-TuM12, 1 — G — Guo, Y.X.: SY+SS+BI-TuM12, 1

— H — Heske, C.: SY+SS+BI-TuM3, 1 — K — Kiskinova, M.: SY+SS+BI-TuM9, 1 — M — Merkel, M.: SY+SS+BI-TuM11, 1 -N-

Nilsson, A.R.: SY+SS+BI-TuM1, 1

— R —

Rubio-Zuazo, J .: SY+SS+BI-TuM11, 1 -Z-

Zhang, L.: SY+SS+BI-TuM12, 1 Zhang, W.H.: SY+SS+BI-TuM12, 1 Zhao, W.: SY+SS+BI-TuM12, 1 Zharnikov, M.: SY+SS+BI-TuM5, 1 Zhu, J.F.: SY+SS+BI-TuM12, 1