AVS 55th International Symposium & Exhibition | |
Surface Science | Thursday Sessions |
Session SS-ThP |
Session: | Poster Session |
Presenter: | N. Yoshida, The University of Tokyo, Japan |
Authors: | N. Yoshida, The University of Tokyo, Japan T. Watanabe, The University of Tokyo, Japan |
Correspondent: | Click to Email |
Wettability of solid surface has attracted much attention in many fields, from basic surface science to practical uses. Up to now, numerous studies have sought to interpret the static hydrophobicity (contact angle of a droplet and surface energy/surface tention of soild surface) in terms of the interaction between liquid and solid surface. The static hydrophobicity has been well-clarified (controlled by surface energy and morphology), however, the dynamic hydrophobicity (sliding angle and velocity of a droplet), a measure of dynamic adhesive property against water, is still in controversy. Practically, dynamic hydrophobicity does not simply depend on static hydrophobicity. Thus far, no one could completely explain a fact that hydrophobic surfaces of similar water contact angles often show quite different adhesive property against water. In this study, we successfully prepared various hydrophobic surfaces on Au using alkane and fluoroalkane thiols with various adhesive properties against water in terms of solid-liquid interface engineering. We will demonstrate that the dynamic hydrophobicity, a measure of the adhesive property against water, depended on the surface morphology (even of the order of a few nanometers) and surface composition (small amount of polar groups on the surface) and that we could control it independent of static hydrophobicity.