Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSurf 2014) | |
Energy Harvesting & Storage | Thursday Sessions |
Session EH-ThM |
Session: | Nanotechnology & Energy |
Presenter: | Elder De la Rosa, Centro de Investigaciones en Optica A.C., Mexico |
Authors: | I. Zarazua, Centro de Investiagaciones en Optica, Mexico D. Esparaza, Centro de Investigaciones en Optica A.C., Mexico A. Sanchez, Centro de Investigaciones en Optica A.C., Mexico A. Cerda, Centro de Investigaciones en Optica A.C., Mexico T. lopez-Luke, Centro de Investigaciones en Optica A.C., Mexico E. De la Rosa, Centro de Investigaciones en Optica A.C., Mexico |
Correspondent: | Click to Email |
One of the most studied hybrid-type nanostructured solar cells is the Gratzel or dye sensitized solar cell (DSSC). DSSCs typically consist of TiO2 NCs acting as a highly porous, wide bandgap semiconductor for electron collection, and dye molecules adsorbed onto the TiO2 NCs surface acting as sensitizers to harvest solar light. An alternative to DSSC is the utilization of quantum dots (QDs), e.g., CdSe, CdTe, CdS, PbS, PbSe, Bi2S3, and InP, as sensitizers to replace the expensive ruthenium dyes. QDs have large extinction coefficients in the visible region and, after bandgap excitation, undergo charge separation, injecting electrons to the conduction band of the metal oxide
The quantum dots (QD) has been recently drawing great attention as a material for solar energy conversion. The quantum dots sensitized titanium dioxide (TiO2) was synthesized by different chemical methods such as successive ionic layer adsorption and reaction (SILAR), and electrophoresis (EP). Titanium dioxide (TiO2) films consisting of a 150 nm compact layer, a 6 µm layer made of 40 nm TiO2 nanoparticles (NPs) and a 7 µm scattering layer made of 400 nm TiO2 NPs, were composited with several QDs such as CdS, PbS, ZnS, and Bi2S3 by SILAR and EP. Multisensitized configurations as PbS/CdS/ZnS and CdS/Bi2S3/Zns were analyzed obtaining a photoconversion efficiencies of 3.75% and 2.52% respectively. These efficiencies are due to high photocurrents (14.3 and 10.2 Ma/cm2, respectively) obtained by the correct combination of near infrared and visible light photoabsorption. Photoconversion efficiency was increased to 5% by combining both sensitizers method in the appropriate way. It also was studied the effect of depositing Gold Nanoparticles (Au NPs) by electophoresis in CdS SILAR sensitized solar cells, results show that Au NPs slightly reduces the photocurrent (from 8.7 to 7.4 Ma) by reducing the photoabsoption of the CdS QDs, but at the same time strongly increases the FF (from 51 to 58%) and Voc (from 510 to 560 Mv). Electrochemical measurements suggest that Au NPs help to prevent recombination processes in the solar cell. In this paper, a detailed analysis of charge transport on both configurations is presented; taking advantage of impedance spectroscopy (IES) a detailed analysis of each interface is also presented.
We acknowledge financial support from CONACYT through grant 134111, UC-MEXUS program, CEMIE-Sol (P28), and European Community Seven Framework Programme (FP7-NMP-2010-EU-MEXICO) and CONACYT under grant agreements 263878 and 125141, respectively. D. Esparza, Andrea Sánchez and Andrea Cerda acknowledge scholarship from CONACYT.