Nanowires: A Platform for Nanoscience & Nanotechnology

Charles M. Lieber
Harvard University

http://cmliris.harvard.edu
Outline of Presentation

- Why Nanowires
- Synthesis of Functional Nanowires
- Nanoelectronic-Biology Interface
- Conclusions & Future
Why Nanowires?

- Central importance of nanoscale wires in integrated nanosystems
- Fundamental scientific questions in 1-dimensional systems
- Synthetic challenge of controlling structure and composition on many length scales
- New/novel materials can make revolutionary vs. evolutionary changes in science and technology!
Nanoscale Wire-like Materials: Carbon Nanotubes

- Metals & semiconductors depending only on diameter and helicity (+/-)
- Carbon is carbon (+/-)

Functional Nanowires: A Beginning

Designed synthesis yields materials with diverse & predictable physical properties beyond that achievable with template

- Requires template & limited in classes of materials

History: Key Growth Concepts

\[r_{\text{min}} = 2\sigma_{LV}V_L/RT\ln\sigma \]

\[\sim 100 \text{ nm} \]

\(\sigma_{LV} \) is liquid-vapor interfacial free energy
\(V_L \) is the liquid molar volume
\(\sigma \) is the vapor phase supersaturation

Wagner & Ellis, *Appl. Phys. Lett.* 4, 89 (1964)
Nanowires: A General & Predictable Approach

- **Breaking symmetry for 1D growth.** Nanoscale wires can be prepared rationally by exploiting a catalyst to direct preferentially the addition of reactant.

- The key issue for controlled nanowire growth is the generation of nanometer scale ‘catalyst’ clusters.

- The growth process begins when the catalyst becomes supersaturated with reactant, and terminates when the nanowires pass out of the hot reaction zone.

Nanocluster-Catalyzed Nanowire Growth: An Early Summary

- minimum diameters ~2 nm with single crystal structure
- controlled nucleation yields monodisperse diameters with controlled lengths
- surface properties tailed for assembly and device properties

Table

<table>
<thead>
<tr>
<th>Material</th>
<th>Group IV</th>
<th>Group IV Alloys:</th>
<th>III-V</th>
<th>III-V Alloys</th>
<th>II-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si, Ge</td>
<td>Si(x)Ge({1-x})</td>
<td>GaAs</td>
<td>GaAs(x)P({1-x})</td>
<td>ZnS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GaP</td>
<td>InAs(x)P({1-x})</td>
<td>ZnSe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GaN</td>
<td>InAs</td>
<td>CdS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>InP</td>
<td></td>
<td>CdSe</td>
</tr>
<tr>
<td>Growth Conditions</td>
<td>330-1200 Fe, Ni, Au</td>
<td>850-950 Fe, Au</td>
<td>700-1000 Cu, Ag, Au</td>
<td>800-950 Au, Ag</td>
<td>700-1000 Au</td>
</tr>
<tr>
<td>Composition</td>
<td>pure</td>
<td>1:1</td>
<td>defined by starting composition</td>
<td>1:1</td>
<td></td>
</tr>
</tbody>
</table>

Nanowire Heterostructures & Superlattices

1-d growth nucleation

axial growth

axial heterojunction/superlattice

axial growth

radial growth

radial heterostructures

- Designed core/shell nanowire structure enables investigations of electron and hole gases confined in uniform 1D potential.
- Reduced scattering can yield higher mobility transistors and open up studies of fundamental quantum phenomena at low-temperatures!

Pushing Nanowire Transistor Limits

Transconductance = 26 μS/V

Max I_{on} = 35 μA

Scaled values (V_{dd}=1V; 70/30 on/off):

$G_m = 1.4$ mS/µm

$I_{on} = 0.78$ mA/µm

Transconductance = 60 μS/V

Max I_{on} = 91 μA.

Scaled values (V_{dd}=1V; 70/30 on/off):

$G_m = 3.3$ mS/µm

$I_{on} = 2.1$ mA/µm

First demonstration that a nanowire transistor could exceed limits of top-down devices!!

Nanowire FETs: How Good Are They?

- $L = 40 \text{ nm}$, 8x faster than Si p-MOSFET, and shows fundamental limit $> 2 \text{ THz}$
- I_{on} is $\sim 100\%$ of the ballistic limit at low bias

Double Quantum Dot with Integrated Charge Sensor Based on Ge/Si Nanowires

- Fully control of interdot coupling and barrier height by local top gates
- Plunger gates control charge number
- Double dot capacitively coupled to sensor dot on adjacent nanowire
- Charge sensing critical for single-electron double dots and spin control

Core/Shell Architecture is Rich in Function: Photovoltaics

p-i-n Core/Shell Nanowire Properties

- Dark current-voltage ($I-V$) data demonstrate (i) ohmic contacts and (ii) good rectifying/diode behavior with quality factors, n, of ~2.

- Under 1-sun illumination, yield an open circuit voltage of 0.260 V, a short circuit current (density) of 0.503 nA (24 mA/cm2), and stable operation of at least 8-months!

- 1-sun efficiency, ~3.5%, and current density exceed values achieved with nanoparticle & nanorod composite systems, although open circuit voltage is lower.

- Power output is ~ 1 nW (ca. 100 W/m2)

Axial $p-i-n$ Nanowire Photovoltaics

- Optical absorption and transport characteristics are unique compared to radial core/shell nanowires.
- Important point of comparison for studies of carrier generation, recombination and collection at the nanometer scale.
Axial p-i-n Nanowires: Synthesis & Properties

- Controlled modulation of p-, i-, and n-type diode regions
- Etching delineates different doped Si regions

- Good quality diodes (not Schottky) with quality factors for $i = 4\mu m$ of 1.2-1.3.
- ΔI_{sc} is proportional to ΔI_{length} implies that photocurrent is predominantly from i-region

Kempa, Tian, Zheng, Lieber & coworkers
Axial p-i-n Nanowires: Tandem Cells

- Controlled nanowire synthesis enables integration of 2 (or more) p-i-n diodes in series with independent control of all junctions.

- Substantial increase in open circuit voltage realized in ‘tandem’ single nanowire photovoltaic elements!
Assembly of Multi-Functional Structures: NW-Photovoltaic Powered Nanodevices

- Individual coaxial nanowires function as robust photovoltaic devices with sufficient power output to drive nanoelectronic devices ‘on chip’.

- A single photovoltaic nanowire integrated with a nanowire sensors is capable of powering the nanowire sensor device without external input.

Interfaces between nanoelectronic & biological systems

- Natural length-scale for electronic interfaces
- Create new tools for biophysics to healthcare

Nanoelectronic-Biological Systems

Hybrid materials that enable new opportunities in science & technology
Because the sizes of biological macromolecules are comparable to nanowire building blocks, these structures represent natural transducers for ultra-sensitive detection.
Nanowire Nanosensors: Beginning

- A nanotransistor is transformed into a nanosensor by modifying the surface with a receptor.
- Changes in the surface charge ‘gate’ the device and yield a conductance change.

Detection of Proteins

- Real-time label-free
- High-sensitivity and specificity

Cui, Wei, Park & Lieber, *Science* 293, 1289 (2001)
Nanosensor Chip for Real-Time, Label-Free Multiplexed Detection

- **Bottom-up/top-down hybrid fabrication yields large number of addressable nanowire elements**
- **Assemble distinct types of nanowires on single chip**
- **Personalize sensor elements with distinct receptors**

Multiplexed Cancer Marker Detection

- Multiplexed, real-time monitoring of cancer marker proteins.
- Quantitative & selective detection of protein concentration to femtomolar level.
- General platform for multiplexed, ultrasensitive, real-time detection of proteins and other species!

Undiluted Blood Serum Analysis

- Serum samples are characterized after single step ‘desalting’ purification.
- (1) buffer; (2) *Donkey Serum (DS)*, 59 mg/ml total protein; (3) DS + 2.5 pM PSA; (4) DS + 25 pM PSA
- (1) DS + 0.9 pg/ml; (2) DS

Marker proteins are detected selectively in presence of ca. 100-billion-fold excess of serum proteins!

Making Good on the Promise: Commercialization

- Vista combines nanowire devices and biotechnology to provide all the tools needed to measure **biomarkers over time**.

- Revolutionize monitoring of biomarkers of therapeutic response and toxicity in the clinic and lab for drug development through patient care.

Vista Therapeutics, Inc.
www.vistatherapeutics.org
Ultimate Sensor: Single-Particle Detection

Can nanoscience enable detection at ultimate limit of a single biological entity?

Can the sensitivity of nanowire sensors be pushed to enable true single molecule detection?

Consider the case of small oligonucleotides:

Fang, Zheng, Tian, Yan, Zhou & Lieber
Nanoelectronic-Cell Interfaces

An example:

Nanowire nanoelectronic devices can enable:
- Interface to cells at natural scale of biological communication
- Input/output of electrical signals
- Input/output of chemical/biological signals
Nanowire/Neuron Junctions

- Nanowire (NW) response correlated w/conventional measurements
- Multiplexed recording with flexible arrays is straightforward
- Nanowire/neuron junctions can be localized at level of individual neurites

Nondestructive, Real-time Neurotransmitter Detection

- Selective detection of neurotransmitter dopamine to at least 100 fM sensitivity
- Reversible & nondestructive
- Potential for high spatial and temporal resolution
- Potential for simultaneous neurotransmitter & action potential recording
Better Approaches for Building & Using These Tools?
Interfacing to Brain Slices

S. Pal & V. Murthy
Q. Qing, B. Tian, G. Yu & Lieber
Vision for Life Sciences

Nanoelectronic-Biological Interfaces Enable:

- Diagnostic devices for disease detection
- General detection & kinetics platform
- New tool for single-molecule detection/biophysics
- Powerful devices for electronic and chem/bio recording from cells, tissue & organs
- Potential implants for highly functional & powerful prosthetics, as well as hybrid biomaterials enabling new opportunities
Evaluating Research Motivation: Progress?

- Synthetic challenge of controlling structure and composition on many length scales
- Fundamental scientific questions in 1-dimensional systems
- Central importance of nanoscale wires in integrated nanosystems
- New/novel materials can make revolutionary vs. evolutionary changes in science and technology!

⇒ Many fundamental scientific questions remain, and will require bold researchers to address.
⇒ Pushing ourselves to identify and tackle these ‘big’ challenges, while difficult, offers the best opportunity to make revolutionary advances and benefit society!
Lieber Research Group

Brian Timko
Ping Xie
Jian-Ru Gong
Tzahi Cohen-Karni
Lu Wang
Didier Cassanova

Quan Qing
Bozhi Tian
Thomas Kempa
Hwan Sung Choe
Sirui Zou
Yizhe Zhang

Hao Yan
Yongjie Hu
Guihua Yu
Yajie Dong
Xiaocheng Jiang
Quihua Xiong

Ritesh Agarwal
Wei Lu
Ali Javey
Fernando Patolsky
Silvija Gradecak
Alex Wong
Pavle Radovanovic
Chen Yang
Mike McAlpine
Yue Wu

Xiaolin Zheng
Ying Fang
Xuan Gao
Yat Li
Hong-Gyu Park
Won-Il Park
Jie Xiang